Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Med Phys ; 50(10): 6624-6636, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37408321

ABSTRACT

BACKGROUND: Patient-specific QA verification ensures patient safety and treatment by verifying radiation delivery and dose calculations in treatment plans for errors. However, a two-dimensional (2D) dose distribution is insufficient for detecting information on the three-dimensional (3D) dose delivered to the patient. In addition, 3D radiochromic plastic dosimeters (RPDs) such as PRESAGE® represent the volume effect in which the dosimeters have different sensitivities according to the size of the dosimeters. Therefore, to solve the volume effect, a Quasi-3D dosimetry system was proposed to perform patient-specific QA using predetermined-sized and multiple RPDs. PURPOSE: For patient-specific quality assurance (QA) in radiation treatment, this study aims to assess a quasi-3D dosimetry system using an RPD. METHODS: Gamma analysis was performed to verify the agreement between the measured and estimated dose distributions of intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). We fabricated cylindrical RPDs and a quasi-3D dosimetry phantom. A practicability test for a pancreatic patient utilized a quasi-3D dosimetry device, an in-house RPD, and a quasi-3D phantom. The dose distribution of the VMAT design dictated the placement of nine RPDs. Moreover, a 2D diode array detector was used for 2D gamma analysis (MapCHECK2). The patient-specific QA was performed for IMRT, VMAT, and stereotactic ablative radiotherapy (SABR) in 20 prostate and head-and-neck patients. For each patient, six RPDs were positioned according to the dose distribution. VMAT SABR and IMRT/VMAT plans employed a 2%/2 mm gamma criterion, whereas IMRT/VMAT plans used a 3%/2 mm gamma criterion, a 10% threshold value, and a 90% passing rate tolerance. 3D gamma analysis was conducted using the 3D Slicer software. RESULTS: The average gamma passing rates with 2%/2 mm and 3%/3 mm criteria for relative dose distribution were 91.6% ± 1.4% and 99.4% ± 0.7% for the 3D gamma analysis using the quasi-3D dosimetry system, respectively, and 97.5% and 99.3% for 2D gamma analysis using MapCHECK2, respectively. The 3D gamma analysis for patient-specific QA of 20 patients showed passing rates of over 90% with 2%/2 mm, 3%/2 mm, and 3%/3 mm criteria. CONCLUSIONS: The quasi-3D dosimetry system was evaluated by performing patient-specific QAs with RPDs and quasi-3D phantom. The gamma indices for all RPDs showed more than 90% for 2%/2 mm, 3%/2 mm, and 3%/3 mm criteria. We verified the feasibility of a quasi-3D dosimetry system by performing the conventional patient-specific QA with the quasi-3D dosimeters.


Subject(s)
Radiation Dosimeters , Radiotherapy, Intensity-Modulated , Male , Humans , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods , Radiometry , Phantoms, Imaging , Quality Assurance, Health Care
2.
Radiat Oncol ; 18(1): 60, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37016351

ABSTRACT

BACKGROUND: This study was conducted to evaluate the efficiency and accuracy of the daily patient setup for breast cancer patients by applying surface-guided radiation therapy (SGRT) using the Halcyon system instead of conventional laser alignment based on the skin marking method. METHODS AND MATERIALS: We retrospectively investigated 228 treatment fractions using two different initial patient setup methods. The accuracy of the residual rotational error of the SGRT system was evaluated by using an in-house breast phantom. The residual translational error was analyzed using the couch position difference in the vertical, longitudinal, and lateral directions between the reference computed tomography and daily kilo-voltage cone beam computed tomography acquired from the record and verification system. The residual rotational error (pitch, yaw, and roll) was also calculated using an auto rigid registration between the two images based on Velocity. The total setup time, which combined the initial setup time and imaging time, was analyzed to evaluate the efficiency of the daily patient setup for SGRT. RESULTS: The average residual rotational errors using the in-house fabricated breast phantom for pitch, roll, and yaw were 0.14°, 0.13°, and 0.29°, respectively. The average differences in the couch positions for laser alignment based on the skin marking method were 2.7 ± 1.6 mm, 2.0 ± 1.2 mm, and 2.1 ± 1.0 mm for the vertical, longitudinal, and lateral directions, respectively. For SGRT, the average differences in the couch positions were 1.9 ± 1.2 mm, 2.9 ± 2.1 mm, and 1.9 ± 0.7 mm for the vertical, longitudinal, and lateral directions, respectively. The rotational errors for pitch, yaw, and roll without the surface-guided radiation therapy approach were 0.32 ± 0.30°, 0.51 ± 0.24°, and 0.29 ± 0.22°, respectively. For SGRT, the rotational errors were 0.30 ± 0.22°, 0.51 ± 0.26°, and 0.19 ± 0.13°, respectively. The average total setup times considering both the initial setup time and imaging time were 314 s and 331 s, respectively, with and without SGRT. CONCLUSION: We demonstrated that using SGRT improves the accuracy and efficiency of initial patient setups in breast cancer patients using the Halcyon system, which has limitations in correcting the rotational offset.


Subject(s)
Breast Neoplasms , Radiotherapy, Image-Guided , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/radiotherapy , Retrospective Studies , Radiotherapy, Image-Guided/methods , Breast , Tomography, X-Ray Computed , Cone-Beam Computed Tomography/methods , Radiotherapy Planning, Computer-Assisted/methods
3.
Phys Eng Sci Med ; 45(3): 809-816, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35723860

ABSTRACT

The performance of a visual guidance patient-controlled (VG-PC) respiratory gating system for magnetic-resonance (MR) image-guided radiation therapy (MR-IGRT) was evaluated through a clinical trial of patients with either lung or liver cancer. Patients can voluntarily control their respiration utilizing the VG-PC respiratory gating system. The system enables patients to view near-real-time cine planar MR images projected inside the bore of MR-IGRT systems or an external screen. Twenty patients who had received stereotactic ablative radiotherapy (SABR) for lung or liver cancer were prospectively selected for this study. Before the first treatment, comprehensive instruction on the VG-PC respiratory gating system was provided to the patients. Respiratory-gated MR-IGRT was performed for each patient with it in the first fraction and then without it in the second fraction. For both the fractions, the total treatment time, beam-off time owing to the respiratory gating, and number of beam-off events were analyzed. The average total treatment time, beam-off time, and number of beam-off events with the system were 1507.3 s, 679.5 s, and 185, respectively, and those without the system were 2023.7 s (p < 0.001), 1195.0 s (p < 0.001), and 380 times (p < 0.001), respectively. The VG-PC respiratory gating system improved treatment efficiency through a reduction in the beam-off time, the number of beam-off events, and consequently the total treatment time when performing respiratory-gated MR-IGRT for lung and liver SABR.


Subject(s)
Liver Neoplasms , Lung Neoplasms , Radiosurgery , Radiotherapy, Image-Guided , Humans , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/radiotherapy , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Lung Neoplasms/surgery , Magnetic Phenomena , Radiotherapy, Image-Guided/methods
4.
J Appl Clin Med Phys ; 23(8): e13644, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35579090

ABSTRACT

PURPOSE: The objective of this study was to fabricate an anthropomorphic multimodality pelvic phantom to evaluate a deep-learning-based synthetic computed tomography (CT) algorithm for magnetic resonance (MR)-only radiotherapy. METHODS: Polyurethane-based and silicone-based materials with various silicone oil concentrations were scanned using 0.35 T MR and CT scanner to determine the tissue surrogate. Five tissue surrogates were determined by comparing the organ intensity with patient CT and MR images. Patient-specific organ modeling for three-dimensional printing was performed by manually delineating the structures of interest. The phantom was finally fabricated by casting materials for each structure. For the quantitative evaluation, the mean and standard deviations were measured within the regions of interest on the MR, simulation CT (CTsim ), and synthetic CT (CTsyn ) images. Intensity-modulated radiation therapy plans were generated to assess the impact of different electron density assignments on plan quality using CTsim and CTsyn . The dose calculation accuracy was investigated in terms of gamma analysis and dose-volume histogram parameters. RESULTS: For the prostate site, the mean MR intensities for the patient and phantom were 78.1 ± 13.8 and 86.5 ± 19.3, respectively. The mean intensity of the synthetic image was 30.9 Hounsfield unit (HU), which was comparable to that of the real CT phantom image. The original and synthetic CT intensities of the fat tissue in the phantom were -105.8 ± 4.9 HU and -107.8 ± 7.8 HU, respectively. For the target volume, the difference in D95% was 0.32 Gy using CTsyn with respect to CTsim values. The V65Gy values for the bladder in the plans using CTsim and CTsyn were 0.31% and 0.15%, respectively. CONCLUSION: This work demonstrated that the anthropomorphic phantom was physiologically and geometrically similar to the patient organs and was employed to quantitatively evaluate the deep-learning-based synthetic CT algorithm.


Subject(s)
Deep Learning , Humans , Magnetic Resonance Imaging/methods , Male , Pelvis/diagnostic imaging , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Tomography, X-Ray Computed/methods
5.
Biomed Eng Lett ; 11(3): 263-271, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34350052

ABSTRACT

Although MR-guided radiotherapy (MRgRT) is advancing rapidly, generating accurate synthetic CT (sCT) from MRI is still challenging. Previous approaches using deep neural networks require large dataset of precisely co-registered CT and MRI pairs that are difficult to obtain due to respiration and peristalsis. Here, we propose a method to generate sCT based on deep learning training with weakly paired CT and MR images acquired from an MRgRT system using a cycle-consistent GAN (CycleGAN) framework that allows the unpaired image-to-image translation in abdomen and thorax. Data from 90 cancer patients who underwent MRgRT were retrospectively used. CT images of the patients were aligned to the corresponding MR images using deformable registration, and the deformed CT (dCT) and MRI pairs were used for network training and testing. The 2.5D CycleGAN was constructed to generate sCT from the MRI input. To improve the sCT generation performance, a perceptual loss that explores the discrepancy between high-dimensional representations of images extracted from a well-trained classifier was incorporated into the CycleGAN. The CycleGAN with perceptual loss outperformed the U-net in terms of errors and similarities between sCT and dCT, and dose estimation for treatment planning of thorax, and abdomen. The sCT generated using CycleGAN produced virtually identical dose distribution maps and dose-volume histograms compared to dCT. CycleGAN with perceptual loss outperformed U-net in sCT generation when trained with weakly paired dCT-MRI for MRgRT. The proposed method will be useful to increase the treatment accuracy of MR-only or MR-guided adaptive radiotherapy. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13534-021-00195-8.

6.
Phys Eng Sci Med ; 44(4): 1061-1069, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34351614

ABSTRACT

This study aims to calculate the dose delivered to the upstream surface of a biocompatible flexible absorber covering lead for electron beam treatment of skin and subcutaneous tumour lesions for head and neck. Silicone (Ecoflex™ 00-30, Smooth-On, Easton, PA, USA) was used to cover the lead to absorb backscattered electrons from lead. A 3D printer (Zortrax M300, Zortrax, Olsztyn, Poland) was used to fabricate the lead shield. Analytic calculation, simplified Monte Carlo (MC) simulation, and detailed MC simulation which includes a modeling of metal-oxide-semiconductor field-effect transistor (MOSFET) detector were performed to determine the electron backscatter factor (EBF) for 6 MeV and 9 MeV electron beams of a Varian iX Silhouette. MCNP6.2 was used to calculate the EBF and corresponding measurements were carried out by using MOSFET detectors. The EBF was experimentally measured by the ratio of dose at the upstream surface of the silicone to the same point without the presence of the lead shield. The results derived by all four methods agreed within 2.8% for 6 MeV and 3.4% for 9 MeV beams. In detailed MC simulations, for 6 MeV, dose to the surface of 7-mm-thick absorber was 103.7 [Formula: see text] 1.9% compared to dose maximum (Dmax) without lead. For 9 MeV, the dose to the surface of the 10-mm-thick absorber was 104.1 [Formula: see text] 2.1% compared to Dmax without lead. The simplified MC simulation was recommended for practical treatment planning due to its acceptable calculation accuracy and efficiency. The simplified MC simulation was completed within 20 min using parallel processing with 80 CPUs, while the detailed MC simulation required 40 h to be done. In this study, we outline the procedures to use the lead shield covered by silicone in clinical practice from fabrication to dose calculation.


Subject(s)
Electrons , Silicones , Monte Carlo Method , Printing, Three-Dimensional , Radiotherapy Dosage
7.
Anticancer Res ; 41(6): 3145-3152, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34083309

ABSTRACT

BACKGROUND/AIM: To present the variations in the target delineation and the planning results of intensity-modulated radiation therapy (IMRT) for breast cancers. PATIENTS AND METHODS: We requested the target volumes and organs at risk delineation for two cases of left breast cancers, and evaluated the IMRT plans including the supraclavicular and internal mammary node irradiation. RESULTS: Twenty-one institutions participated in this study. Differences in the planning target volume among institutions reached up to three-times for breast-conserving surgery (BCS) case and five-times for mastectomy case. Mean heart doses ranged from 3.3 to 24.1 Gy for BCS case and from 5.0 to 26.5 Gy for mastectomy case. Ipsilateral lung volumes receiving more than 20 Gy ranged from 4.7 to 57.4% for BCS case and from 16.4 to 55.5% for mastectomy case. CONCLUSION: There were large variations in the target delineation and planning results of IMRT for breast cancers among institutions. Considering the increased use of breast IMRT, more standardized protocols are needed.


Subject(s)
Breast Neoplasms/radiotherapy , Radiotherapy, Intensity-Modulated/methods , Breast Neoplasms/diagnostic imaging , Female , Humans , Interinstitutional Relations , Middle Aged , Organs at Risk , Republic of Korea
8.
Eur Radiol ; 30(12): 6779-6787, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32601950

ABSTRACT

OBJECTIVE: This study determined the effect of dose reduction and kernel selection on quantifying emphysema using low-dose computed tomography (LDCT) and evaluated the efficiency of a deep learning-based kernel conversion technique in normalizing kernels for emphysema quantification. METHODS: A sample of 131 participants underwent LDCT and standard-dose computed tomography (SDCT) at 1- to 2-year intervals. LDCT images were reconstructed with B31f and B50f kernels, and SDCT images were reconstructed with B30f kernels. A deep learning model was used to convert the LDCT image from a B50f kernel to a B31f kernel. Emphysema indices (EIs), lung attenuation at 15th percentile (perc15), and mean lung density (MLD) were calculated. Comparisons among the different kernel types for both LDCT and SDCT were performed using Friedman's test and Bland-Altman plots. RESULTS: All values of LDCT B50f were significantly different compared with the values of LDCT B31f and SDCT B30f (p < 0.05). Although there was a statistical difference, the variation of the values of LDCT B50f significantly decreased after kernel normalization. The 95% limits of agreement between the SDCT and LDCT kernels (B31f and converted B50f) ranged from - 2.9 to 4.3% and from - 3.2 to 4.4%, respectively. However, there were no significant differences in EIs and perc15 between SDCT and LDCT converted B50f in the non-chronic obstructive pulmonary disease (COPD) participants (p > 0.05). CONCLUSION: The deep learning-based CT kernel conversion of sharp kernel in LDCT significantly reduced variation in emphysema quantification, and could be used for emphysema quantification. KEY POINTS: • Low-dose computed tomography with smooth kernel showed adequate performance in quantifying emphysema compared with standard-dose CT. • Emphysema quantification is affected by kernel selection and the application of a sharp kernel resulted in a significant overestimation of emphysema. • Deep learning-based kernel normalization of sharp kernel significantly reduced variation in emphysema quantification.


Subject(s)
Deep Learning , Diagnosis, Computer-Assisted/methods , Pulmonary Emphysema/diagnostic imaging , Tomography, X-Ray Computed , Aged , Biometry , Cross-Sectional Studies , Female , Humans , Lung/diagnostic imaging , Lung Diseases/diagnostic imaging , Male , Middle Aged , Radiation Dosage , Retrospective Studies , Treatment Outcome
9.
Phys Med Biol ; 64(13): 135010, 2019 07 04.
Article in English | MEDLINE | ID: mdl-31185463

ABSTRACT

Lung densitometry is being frequently adopted in CT-based emphysema quantification, yet known to be affected by the choice of reconstruction kernel. This study presents a two-step deep learning architecture that enables accurate normalization of reconstruction kernel effects on emphysema quantification in low-dose CT. Deep learning is used to convert a CT image of a sharp kernel to that of a standard kernel with restoration of truncation artifacts and smoothing-free pixel size normalization. We selected 353 scans reconstructed by both standard and sharp kernels from four different CT scanners from the United States National Lung Screening Trial program database. A truncation artifact correction model was constructed with a combination of histogram extrapolation and a deep learning model trained with truncated and non-truncated image sets. Then, we performed frequency domain zero-padding to normalize reconstruction field of view effects while preventing image smoothing effects. The kernel normalization model has a U-Net based architecture trained for each CT scanner dataset. Three lung density measurements including relative lung area under 950 HU (RA950), lower 15th percentile threshold (perc15), and mean lung density were obtained in the datasets from standard, sharp, and normalized kernels. The effect of kernel normalization was evaluated with pair-wise differences in lung density metrics. The mean of pair-wise differences in RA950 between standard and sharp kernel reconstructions was reduced from 10.75% to -0.07% using kernel normalization. The difference for perc15 decreased from -31.03 HU to -0.30 HU after kernel normalization. Our study demonstrated the feasibility of applying deep learning techniques for normalizing CT kernel effects, thereby reducing the kernel-induced variability in lung density measurements. The deep learning model could increase the accuracy of emphysema quantification, thereby allowing reliable surveillance of emphysema in lung cancer screening even when follow-up CT scans are acquired with different reconstruction kernels.


Subject(s)
Deep Learning , Image Processing, Computer-Assisted/methods , Pulmonary Emphysema/diagnostic imaging , Radiation Dosage , Tomography, X-Ray Computed , Humans
10.
Med Phys ; 2018 Jul 03.
Article in English | MEDLINE | ID: mdl-29969838

ABSTRACT

PURPOSE: The dimensions of small airways with an internal diameter of less than 2-3 mm are important biomarkers for the evaluation of pulmonary diseases, such as asthma and chronic obstructive pulmonary disease (COPD). The resolution limitations of CT systems, however, have remained a barrier to be of use for determining the small airway dimensions. We present a novel approach, called the attenuation profile matching (APM) method, which allows for the accurate determination of the small airway dimension while being robust to varying CT scan parameters. METHOD: For generating the synthetic attenuation profiles of an airway, we acquired and employed the point spread functions of a CT system by calculating its convolution with numerical airway models with varying wall thicknesses. The dimensions of a given airway were determined as per the numerical model yielding minimum error between the measured and the synthetic attenuation profiles across the airway. RESULTS: In a phantom study with airway tubes, the APM method proved to be highly accurate in determining airway wall dimensions. The measurement error for the smallest tube (0.6 mm thickness, 3 mm diameter) was merely 0.02 mm (3.3%) in wall thickness and 0.17 mm (5.6%) in lumen diameter. In a pilot clinical test, the APM method was able to distinguish the airway wall thicknesses of COPD cases (1.16 ± 0.23 mm) from those of normal subjects (0.6 ± 0.18 mm), while the measurements using the full width at half maximum method substantially overlapped (1.45 ± 0.32 mm vs. 1.28 ± 0.30 mm, respectively) and were barely distinguishable from each other. CONCLUSION: Our proposed APM method has the potential to overcome the resolution limitations of current CT systems and accurately determine the small airway dimensions in COPD patients.

11.
J Comput Assist Tomogr ; 42(2): 269-276, 2018.
Article in English | MEDLINE | ID: mdl-28937486

ABSTRACT

OBJECTIVE: The purpose of this study was to evaluate a gonadal shield (GS) and iterative metallic artifact reduction (IMAR) during computed tomography scans, regarding the image quality and radiation dose. METHODS: A phantom was imaged with and without a GS. Prospectively enrolled, young male patients underwent lower extremity computed tomography venography (precontrast imaging without the GS and postcontrast imaging with the GS). Radiation dose was measured each time, and the GS-applied images were reconstructed by weighted filtered back projection and IMAR. RESULTS: In the phantom study, image artifacts were significantly reduced by using IMAR (P = 0.031), whereas the GS reduced the radiation dose by 61.3%. In the clinical study (n = 29), IMAR mitigated artifacts from the GS, thus 96.6% of the IMAR image sets were clinically usable. Gonadal shielding reduced the radiation dose to the testes by 69.0%. CONCLUSIONS: The GS in conjunction with IMAR significantly reduced the radiation dose to the testes while maintaining the image quality.


Subject(s)
Artifacts , Gonads , Lower Extremity/blood supply , Phlebography/methods , Radiation Protection/instrumentation , Tomography, X-Ray Computed/methods , Adolescent , Adult , Humans , Lower Extremity/diagnostic imaging , Male , Metals , Phantoms, Imaging , Prospective Studies , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...