Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Sci Data ; 11(1): 888, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39147807

ABSTRACT

The Stag beetle (Coleoptera: Lucanidae) is a fascinating group, often considered one of the most primitive within the Scarabaeoidea. They are valuable models for studying beetle evolution. However, the lack of high-quality genomes hinders our understanding of the evolution and ecology of Lucanidae. In this study, we present a chromosome-level genome of Serrognathus titanus by combining PacBio HiFi long reads, Illumina short reads, and Hi-C data. The genome spans 384.07 Mb, with a scaffold N50 size of 75.81 Mb, and most contigs (97.45%, 374.30 Mb) were anchored into six chromosomes. Our BUSCO analysis of the assembly indicates a completeness of 97.6% (n = 1,367), with 92.8% single-copy BUSCOs and 4.8% duplicated BUSCOs identified. Additionally, we found that the genome contains 43.87% (168.50 Mb) repeat elements and identified 14,263 predicted protein-coding genes. The high-quality genome of S. titanus provides valuable genomic information for comprehending the evolution and ecology of Lucanidae.


Subject(s)
Coleoptera , Genome, Insect , Animals , Coleoptera/genetics , Chromosomes, Insect
2.
Sci Data ; 11(1): 785, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39019956

ABSTRACT

Aphidoletes aphidimyza is widely recognized as an effective predator of aphids in agricultural systems. However, there is limited understanding of its predation mechanisms. In this study, we generated a high-quality chromosome level of the A. aphidimyza genome by combining PacBio, Illumina, and Hi-C data. The genome has a size of 192.08 Mb, with a scaffold N50 size of 46.85 Mb, and 99.08% (190.35 Mb) of the assembly is located on four chromosomes. The BUSCO analysis of our assembly indicates a completeness of 97.8% (n = 1,367), including 1,307 (95.6%) single-copy BUSCOs and 30 (2.2%) duplicated BUSCOs. Additionally, we annotated a total of 13,073 protein-coding genes, 18.43% (35.40 Mb) repetitive elements, and 376 non-coding RNAs. Our study is the first time to report the chromosome-scale genome for the species of A. aphidimyza. It provides a valuable genomic resource for the molecular study of A. aphidimyza.


Subject(s)
Diptera , Genome, Insect , Animals , Diptera/genetics , Chromosomes, Insect
3.
Sci Data ; 11(1): 579, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834590

ABSTRACT

Raphidioptera (snakeflies) are a holometabolan order with the least species diversity but play a pivotal role in understanding the origin of complete metamorphosis. Here, we provide an annotated, chromosome-level reference genome assembly for an Asian endemic snakefly Mongoloraphidia duomilia (Yang, 1998) of the family Raphidiidae, assembled using PacBio HiFi and Hi-C data from female specimens. The resulting assembly is 653.56 Mb, of which 97.90% is anchored into 13 chromosomes. The scaffold N50 is 53.50 Mb, and BUSCO completeness is 97.80%. Repetitive elements comprise 64.31% of the genome (366.04 Mb). We identified 599 noncoding RNAs and predicted 11,141 protein-coding genes in the genome (97.70% BUSCO completeness). The new snakefly genome will facilitate comparison of genome architecture across Neuropterida and Holometabola and shed light on the ecological and evolutionary transitions between Neuropterida and Coleopterida.


Subject(s)
Genome, Insect , Holometabola , Animals , Female , Holometabola/genetics
4.
Proc Biol Sci ; 291(2018): 20232937, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38471545

ABSTRACT

Collembola is a highly diverse and abundant group of soil arthropods with chromosome numbers ranging from 5 to 11. Previous karyotype studies indicated that the Tomoceridae family possesses an exceptionally long chromosome. To better understand chromosome size evolution in Collembola, we obtained a chromosome-level genome of Yoshiicerus persimilis with a size of 334.44 Mb and BUSCO completeness of 97.0% (n = 1013). Both genomes of Y. persimilis and Tomocerus qinae (recently published) have an exceptionally large chromosome (ElChr greater than 100 Mb), accounting for nearly one-third of the genome. Comparative genomic analyses suggest that chromosomal elongation occurred independently in the two species approximately 10 million years ago, rather than in the ancestor of the Tomoceridae family. The ElChr elongation was caused by large tandem and segmental duplications, as well as transposon proliferation, with genes in these regions experiencing weaker purifying selection (higher dN/dS) than conserved regions. Moreover, inter-genomic synteny analyses indicated that chromosomal fission/fusion events played a crucial role in the evolution of chromosome numbers (ranging from 5 to 7) within Entomobryomorpha. This study provides a valuable resource for investigating the chromosome evolution of Collembola.


Subject(s)
Arthropods , Genome , Animals , Arthropods/genetics , Genomics , Synteny , Karyotype , Evolution, Molecular
5.
Article in English | MEDLINE | ID: mdl-38192148

ABSTRACT

OBJECTIVE: In recent years, it has been known that mesenchymal stem cells (MSCs) have the potential to treat osteoarthritis (OA). This study aimed to investigate the effects of intraarticular injection of human adipose-derived stem cells (hADSCs) in a new double-damage rabbit osteoarthritis model. METHODS: The OA model was established surgically first by medial collateral ligament and anterior insertional ligament transection and medical meniscectomy, then by articular cartilage full-thickness defect. At six weeks following surgery, hADSCs were labeled with Enhanced Green Fluorescence Protein expressing lentivirus FG12 and injected into the knee joints. All rabbits were sacrificed at 4- and 8 weeks post-surgery. Assessments were carried out by macroscopic examination, immunohistochemistry staining, magnetic resonance imaging, qRT-PCR and ELISA analysis. RESULTS: At 4- and 8 weeks, hADSCs injection showed less cartilage loss, few fissures and few cracks, decreased volume of joint effusion and cartilage defect measured with MRI. Furthermore, ELISA and qRT-PCR methods showed that hADSCs treatment increased the level of IGF-1. CONCLUSIONS: Our data suggest that hADSC transplantation promotes articular cartilage healing in the double-damage rabbit osteoarthritis model, IGF-1 may play an essential role in the hADSC-based cartilage repair process. Transplantation of hADSCs may be suitable for clinical application in the treatment of osteoarthritis.

6.
Pulm Circ ; 14(1): e12332, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38174160

ABSTRACT

Scimitar syndrome is a rare congenital anomaly characterized by partial or total anomalous pulmonary venous drainage of the right lung to the inferior vena cava. We report a case of a 67-year-old female who presented with cough and dyspnea and was diagnosed with scimitar syndrome and pulmonary arterial hypertension based on comprehensive imaging and hemodynamic evaluation. This case highlights the importance of considering scimitar syndrome as a cause of pulmonary hypertension even in adult patients.

7.
J Cancer Res Clin Oncol ; 149(19): 17495-17509, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37902853

ABSTRACT

PURPOSE: Mitogen-activated protein kinases (MAPK), specifically the c-Jun N-terminal kinase (JNK)-MAPK subfamily, play a crucial role in the development of various cancers, including hepatocellular carcinoma (HCC). However, the specific roles of JNK1/2 and their upstream regulators, MKK4/7, in HCC carcinogenesis remain unclear. METHODS: In this study, we performed differential expression analysis of JNK-MAPK components at both the transcriptome and protein levels using TCGA and HPA databases. We utilized Kaplan-Meier survival plots and receiver operating characteristic (ROC) curve analysis to evaluate the prognostic performance of a risk scoring model based on these components in the TCGA-HCC cohort. Additionally, we conducted immunoblotting, apoptosis analysis with FACS and soft agar assays to investigate the response of JNK-MAPK pathway components to various death stimuli (TRAIL, TNF-α, anisomycin, and etoposide) in HCC cell lines. RESULTS: JNK1/2 and MKK7 levels were significantly upregulated in HCC samples compared to paracarcinoma tissues, whereas MKK4 was downregulated. ROC analyses suggested that JNK2 and MKK7 may serve as suitable diagnostic genes for HCC, and high JNK2 expression correlated with significantly poorer overall survival. Knockdown of JNK1 enhanced TRAIL-induced apoptosis in hepatoma cells, while JNK2 knockdown reduced TNF-α/cycloheximide (CHX)-and anisomycin-induced apoptosis. Neither JNK1 nor JNK2 knockdown affected etoposide-induced apoptosis. Furthermore, MKK7 knockdown augmented TNF-α/CHX- and TRAIL-induced apoptosis and inhibited colony formation in hepatoma cells. CONCLUSION: Targeting MKK7, rather than JNK1/2 or MKK4, may be a promising therapeutic strategy to inhibit the JNK-MAPK pathway in HCC therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Carcinoma, Hepatocellular/genetics , Tumor Necrosis Factor-alpha , Etoposide , Anisomycin , MAP Kinase Kinase 7/genetics , MAP Kinase Kinase 7/metabolism , Liver Neoplasms/genetics , Apoptosis
8.
Curr Osteoporos Rep ; 21(6): 743-749, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37796390

ABSTRACT

PURPOSE OF REVIEW: Metformin is an anti-glycemic agent, which is widely prescribed to diabetes patients. Although its alleged role on bone strength has been reported for some time, this review focuses primarily on the recent mechanistical insights of metformin on osteocytes, osteoblasts, and osteoclasts. RECENT FINDINGS: Overall, metformin contributed to steering anabolic activity in osteocytes. It caused lower expression in osteocytes of the negative regulators of bone formation sclerostin and DKK1. Likewise, the osteoclastogenesis function of osteoblasts was also skewed towards lower RANKL and higher OPG expressions. Osteoblast lineage cells generally responded to metformin by activating bone formation parameters, such as alkaline phosphatase activity, higher expression of anabolic members of the Wnt pathway, transcription factor Runx2, bone matrix protein proteins, and subsequent mineralization. Metformin affected osteoclast formation and activity in a negative way, reducing the number of multinucleated cells in association with lower expression of typical osteoclast markers and with inhibited resorption. A common denominator studied in all three cell types is its beneficial effect on activating phosphorylated AMP kinase (AMPK) which is associated with the coordination of energy metabolism. Metformin differentially affects bone cells, shifting the balance to more bone formation. Although metformin is a drug prescribed for diabetic patients, the overall bone anabolic effects on osteocytes and osteoblasts and the anti-catabolic effect on osteoclast suggest that metformin could be seen as a promising drug in the bone field.


Subject(s)
Metformin , Osteoclasts , Humans , Osteoclasts/metabolism , Osteocytes/metabolism , Metformin/pharmacology , Metformin/therapeutic use , Metformin/metabolism , Osteoblasts/metabolism , Bone and Bones/metabolism , RANK Ligand/metabolism , Cell Differentiation
9.
Curr Osteoporos Rep ; 21(6): 731-742, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37792246

ABSTRACT

PURPOSE OF REVIEW: Orthodontic tooth movement is characterized by periodontal tissue responses to mechanical loading, leading to clinically relevant functional adaptation of jaw bone. Since osteocytes are significant in mechanotransduction and orchestrate osteoclast and osteoblast activity, they likely play a central role in orthodontic tooth movement. In this review, we attempt to shed light on the impact and role of osteocyte mechanotransduction during orthodontic tooth movement. RECENT FINDINGS: Mechanically loaded osteocytes produce signaling molecules, e.g., bone morphogenetic proteins, Wnts, prostaglandins, osteopontin, nitric oxide, sclerostin, and RANKL, which modulate the recruitment, differentiation, and activity of osteoblasts and osteoclasts. The major signaling pathways activated by mechanical loading in osteocytes are the wingless-related integration site (Wnt)/ß-catenin and RANKL pathways, which are key regulators of bone metabolism. Moreover, osteocytes are capable of orchestrating bone adaptation during orthodontic tooth movement. A better understanding of the role of osteocyte mechanotransduction is crucial to advance orthodontic treatment. The optimal force level on the periodontal tissues for orthodontic tooth movement producing an adequate biological response, is debated. This review emphasizes that both mechanoresponses and inflammation are essential for achieving tooth movement clinically. To fully comprehend the role of osteocyte mechanotransduction in orthodontic tooth movement, more knowledge is needed of the biological pathways involved. This will contribute to optimization of orthodontic treatment and enhance patient outcomes.


Subject(s)
Mechanotransduction, Cellular , Osteocytes , Humans , Osteocytes/physiology , Tooth Movement Techniques , Osteoclasts/metabolism , Osteoblasts/metabolism , Bone Remodeling/physiology
10.
Sci Data ; 10(1): 541, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37587117

ABSTRACT

The Entomobryoidea, the largest superfamily of Collembola, encompasses over 2,000 species in the world. However, the lack of high-quality genomes hinders our understanding of the evolution and ecology of this group. This study presents a chromosome-level genome of Entomobrya proxima by combining PacBio long reads, Illumina short reads, and Hi-C data. The genome has a size of 362.37 Mb, with a scaffold N50 size of 57.67 Mb, and 97.12% (351.95 Mb) of the assembly is located on six chromosomes. The BUSCO analysis of our assembly indicates a completeness of 96.1% (n = 1,013), including 946 (93.4%) single-copy BUSCOs and 27 (2.7%) duplicated BUSCOs. We identified that the genome contains 22.16% (80.06 Mb) repeat elements and 20,988 predicted protein-coding genes. Gene family evolution analysis of E. proxima identified 177 gene families that underwent significant expansions, which were primarily associated with detoxification and metabolism. Moreover, our inter-genomic synteny analysis showed strong chromosomal synteny between E. proxima and Sinella curviseta. Our study provides valuable genomic information for comprehending the evolution and ecology of Collembola.


Subject(s)
Arthropods , Genome , Animals , Arthropods/genetics , Ecology , Genomics
11.
BMC Pulm Med ; 23(1): 260, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37452327

ABSTRACT

BACKGROUND: N-terminal probrain natriuretic peptide (NT-pro-BNP) and BNP are well-known markers for the diagnosis and prognostic of heart failure. Until now, it was not clear whether BNP levels are influenced by events occurring within Obstructive sleep apnea-hypopnea syndrome (OSAHS) with continuous positive airway pressure (CPAP). METHODS: A thorough search in PubMed, EMBASE, Google Scholar, and Web of Science databases up to October 24, 2022, and a meta-analysis aimed to explore further accurate estimates of the effects of BNP on OSAHS after CPAP treatment to assess the strength of the evidence. RESULTS: The forest plot outcome indicated that CPAP therapy did not change the BNP level in patients with OSAHS, with a weighted mean difference (WMD) of -0.47 (95% CI: -1.67 to 2.62; P = 0.53] based on the random effect model because of high significant heterogeneity (I2 = 80%) among the studies. Subgroup analysis also explored the changes in BNP levels in patients with OSAHS. Begg's test (P = 0.835) and Egger's test (P = 0.245) suggested significant negative publication bias. CONCLUSION: Our meta-analysis suggests that CPAP therapy does not change the BNP level in patients with OSAHS; therefore, it is not accurate to use BNP level as an index to evaluate heart function in patients with OSAHS, but more related research should be conducted.


Subject(s)
Heart Failure , Sleep Apnea, Obstructive , Humans , Continuous Positive Airway Pressure , Sleep Apnea, Obstructive/therapy , Heart Failure/therapy
12.
Tissue Eng Part C Methods ; 29(6): 230-241, 2023 06.
Article in English | MEDLINE | ID: mdl-37253166

ABSTRACT

Bioreactor systems, for example, spinner flask and perfusion bioreactors, and cell-seeded three-dimensional (3D)-printed scaffolds are used in bone tissue engineering strategies to stimulate cells and produce bone tissue suitable for implantation into the patient. The construction of functional and clinically relevant bone graft using cell-seeded 3D-printed scaffolds within bioreactor systems is still a challenge. Bioreactor parameters, for example, fluid shear stress and nutrient transport, will crucially affect cell function on 3D-printed scaffolds. Therefore, fluid shear stress induced by spinner flask and perfusion bioreactors might differentially affect osteogenic responsiveness of pre-osteoblasts inside 3D-printed scaffolds. We designed and fabricated surface-modified 3D-printed poly-ɛ-caprolactone (PCL) scaffolds, as well as static, spinner flask, and perfusion bioreactors to determine fluid shear stress and osteogenic responsiveness of MC3T3-E1 pre-osteoblasts seeded on the scaffolds in the bioreactors using finite element (FE)-modeling and experiments. FE-modeling was used to quantify wall shear stress (WSS) distribution and magnitude inside 3D-printed PCL scaffolds within spinner flask and perfusion bioreactors. MC3T3-E1 pre-osteoblasts were seeded on NaOH surface-modified 3D-printed PCL scaffolds, and cultured in customized static, spinner flask, and perfusion bioreactors up to 7 days. The scaffolds' physicochemical properties and pre-osteoblast function were assessed experimentally. FE-modeling showed that spinner flask and perfusion bioreactors locally affected WSS distribution and magnitude inside the scaffolds. The WSS distribution was more homogeneous inside scaffolds in perfusion than in spinner flask bioreactors. The average WSS on scaffold-strand surfaces ranged from 0 to 6.5 mPa for spinner flask bioreactors, and from 0 to 4.1 mPa for perfusion bioreactors. Surface modification of scaffolds by NaOH resulted in a surface with a honeycomb-like pattern and increased surface roughness (1.6-fold), but decreased water contact angle (0.3-fold). Both spinner flask and perfusion bioreactors increased cell spreading, proliferation, and distribution throughout the scaffolds. Perfusion, but not spinner flask bioreactors more strongly enhanced collagen (2.2-fold) and calcium deposition (2.1-fold) throughout the scaffolds after 7 days compared with static bioreactors, likely due to uniform WSS-induced mechanical stimulation of the cells revealed by FE-modeling. In conclusion, our findings indicate the importance of using accurate FE models to estimate WSS and determine experimental conditions for designing cell-seeded 3D-printed scaffolds in bioreactor systems. Impact Statement The success of cell-seeded three-dimensional (3D)-printed scaffolds depends on cell stimulation by biomechanical/biochemical factors to produce bone tissue suitable for implantation into the patient. We designed and fabricated surface-modified 3D-printed poly-ɛ-caprolactone (PCL) scaffolds, as well as static, spinner flask, and perfusion bioreactors to determine wall shear stress (WSS) and osteogenic responsiveness of pre-osteoblasts seeded on the scaffolds using finite element (FE)-modeling and experiments. We found that cell-seeded 3D-printed PCL scaffolds within perfusion bioreactors more strongly enhanced osteogenic activity than within spinner flask bioreactors. Our results indicate the importance of using accurate FE-models to estimate WSS and determine experimental conditions for designing cell-seeded 3D-printed scaffolds in bioreactor systems.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Humans , Tissue Scaffolds/chemistry , Sodium Hydroxide , Tissue Engineering/methods , Bioreactors , Perfusion
13.
Front Biosci (Landmark Ed) ; 28(2): 26, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36866547

ABSTRACT

BACKGROUND: The stemness characteristics of cancer cells, such as self-renewal and tumorigenicity, are considered to be responsible, in part, for tumor metastasis. Epithelial-to-mesenchymal transition (EMT) plays an important role in promoting both stemness and tumor metastasis. Although the traditional medicine juglone is thought to play an anticancer role by affecting cell cycle arrest, induction of apoptosis, and immune regulation, a potential function of juglone in regulating cancer cell stemness characteristics remains unknown. METHODS: In the present study, tumor sphere formation assay and limiting dilution cell transplantation assays were performed to assess the function of juglone in regulating maintenance of cancer cell stemness characteristics. EMT of cancer cells was assessed by western blot and transwell assay in vitro, and a liver metastasis model was also performed to demonstrate the effect of juglone on colorectal cancer cells in vivo. RESULTS: Data gathered indicates juglone inhibits stemness characteristics and EMT in cancer cells. Furthermore, we verified that metastasis was suppressed by juglone treatment. We also observed that these effects were, in part, achieved by inhibiting Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1). CONCLUSIONS: These results indicate that juglone inhibits maintenance of stemness characteristics and metastasis in cancer cells.


Subject(s)
Epithelial-Mesenchymal Transition , Naphthoquinones , Neoplasms , Neoplastic Stem Cells , Apoptosis , Blotting, Western , Neoplasms/drug therapy , Neoplasm Metastasis/prevention & control , Naphthoquinones/pharmacology
14.
Biochem Biophys Res Commun ; 646: 70-77, 2023 02 26.
Article in English | MEDLINE | ID: mdl-36706708

ABSTRACT

Once prostate cancer (PC) metastasizes towards bone the 5-year survival rates drop with 70%, but it is largely unknown why. Bone is continuously mechanically loaded, which likely modulates the paracrine signaling from osteocytes towards PC cells to affect tumor behavior. We hypothesize that shear loaded osteocytes affect PC cell proliferation, invasion and epithelial and mesenchymal-related gene and protein expression. We cultured human DU145 cells, a commonly used cell line for prostate cancer metastases, in the conditioned medium (CM) from shear loaded or unloaded human osteocyte-like-cells (OCYLCs) for 1 and 3 days and assessed their number by staining nuclei with DAPI, their invasion by performing an invasion assay, and epithelial-to-mesenchymal (EMT)-related gene and protein expression by qPCR and immunocytochemistry. CM of shear loaded OCYLCs did not affect DU145 cell number compared to CM of static cultured OCYLCs, but decreased their invasion 1.34-fold. CM of shear loaded OCYLCs enhanced expression of epithelial genes: SYND1 and CDH1 after day 1, while it also enhanced CDH1 after day 3. CM of shear loaded osteocytes enhanced mesenchymal genes: VMN, Snail and MIP2 after day 1, while it decreased expression of mesenchymal CYR61 after day 3. We conclude that CM of shear loaded OCYLCs does not affect DU145 cell proliferation, but decreases their invasion, and differentially affects their EMT-related gene expression. Identifying paracrine signals from shear loaded osteocytes that decrease PC cell invasion may provide novel leads in developing treatments for bone metastases from PC.


Subject(s)
Osteocytes , Prostatic Neoplasms , Male , Humans , Osteocytes/metabolism , Cell Line , Prostatic Neoplasms/pathology , Cell Proliferation , Gene Expression , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Neoplasm Invasiveness
15.
Plant J ; 113(2): 387-401, 2023 01.
Article in English | MEDLINE | ID: mdl-36471650

ABSTRACT

Formate dehydrogenase (FDH; EC 1.2.1.2.) has been implicated in plant responses to a variety of stresses, including aluminum (Al) stress in acidic soils. However, the role of this enzyme in Al tolerance is not yet fully understood, and how FDH gene expression is regulated is unknown. Here, we report the identification and functional characterization of the tomato (Solanum lycopersicum) SlFDH gene. SlFDH encodes a mitochondria-localized FDH with Km values of 2.087 mm formate and 29.1 µm NAD+ . Al induced the expression of SlFDH in tomato root tips, but other metals did not, as determined by quantitative reverse transcriptase-polymerase chain reaction. CRISPR/Cas9-generated SlFDH knockout lines were more sensitive to Al stress and formate than wild-type plants. Formate failed to induce SlFDH expression in the tomato root apex, but NAD+ accumulated in response to Al stress. Co-expression network analysis and interaction analysis between genomic DNA and transcription factors (TFs) using PlantRegMap identified seven TFs that might regulate SlFDH expression. One of these TFs, SlSTOP1, positively regulated SlFDH expression by directly binding to its promoter, as demonstrated by a dual-luciferase reporter assay and electrophoretic mobility shift assay. The Al-induced expression of SlFDH was completely abolished in Slstop1 mutants, indicating that SlSTOP1 is a core regulator of SlFDH expression under Al stress. Taken together, our findings demonstrate that SlFDH plays a role in Al tolerance and reveal the transcriptional regulatory mechanism of SlFDH expression in response to Al stress in tomato.


Subject(s)
Solanum lycopersicum , Solanum lycopersicum/genetics , NAD/metabolism , Aluminum/toxicity , Aluminum/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Formates/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
16.
Mol Ecol Resour ; 23(1): 273-293, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35962787

ABSTRACT

The collembolan Folsomia candida Willem, 1902, is widely distributed throughout the world and has been frequently used as a test organism in soil ecology and ecotoxicology studies. However, it is questioned as an ideal "standard" because of differences in reproductive modes and cryptic genetic diversity between strains from various geographical origins. In this study, we obtained two high-quality chromosome-level genomes of F. candida, for a parthenogenetic strain (named FCDK, 219.08 Mb, 25,139 protein-coding genes) and a sexual strain (named FCSH, 153.09 Mb, 21,609 protein-coding genes), reannotated the genome of the parthenogenetic strain reported by Faddeeva-Vakhrusheva et al. in 2017 (named FCBL, 221.7 Mb, 25,980 protein-coding genes) and conducted comparative genomic analyses of the three strains. High genome similarities between FCDK and FCBL based on synteny, genome architecture, mitochondrial and nuclear gene sequences suggest that they are conspecific. The seven chromosomes of FCDK are each 25%-54% larger than the corresponding chromosomes of FCSH, showing obvious repetitive element expansions and large-scale inversions and translocations but no whole-genome duplication. The strain-specific genes, expanded gene families and genes in nonsyntenic chromosomal regions identified in FCDK are highly related to the broader environmental adaptation of parthenogenetic strains. In addition, FCDK has fewer strain-specific microRNAs than FCSH, and their mitochondrial and nuclear genes have diverged greatly. In conclusion, FCDK/FCBL and FCSH have accumulated independent genetic changes and evolved into distinct species after 10 million years ago. Our work provides important genomic resources for studying the mechanisms of rapidly cryptic speciation and soil arthropod adaptation to soil ecosystems.


Subject(s)
Arthropods , Ecosystem , Animals , Arthropods/genetics , Genome , Synteny , Soil , Evolution, Molecular , Genetic Speciation
17.
Nanomaterials (Basel) ; 12(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36500770

ABSTRACT

A phase-field model was revised to study the abnormal growth of Goss grains during the annealing process in Fe-3%Si steels, in which the interaction between the second-phase particles and Goss grain boundaries (GBs) was considered. The results indicate that the abnormal growth of Goss grains occurs due to the different dissolvability of the particles at Goss GBs compared with the other GBs. Moreover, the degree of abnormal growth increases first and then decreases with an increasing particle content. Meanwhile, the size advantage of Goss grain can further promote the degree of abnormal growth. Two types of island grains were found according to the simulated results, which is consistent with the experimental observations. A proper GB dissolvability of particles is the key factor for the formation of isolated island grains, and a higher local particle density at GBs is the main reason for the appearance of serial island grains. These findings can provide guidance for the desired texture control in silicon steels.

18.
Front Bioeng Biotechnol ; 10: 1011853, 2022.
Article in English | MEDLINE | ID: mdl-36338134

ABSTRACT

Bioactive coatings are promising for improving osseointegration and the long-term success of titanium dental or orthopaedic implants. Biomimetic octacalcium phosphate (OCP) coating can be used as a carrier for osteoinductive agents. κ-Carrageenan, a highly hydrophilic and biocompatible seaweed-derived sulfated-polysaccharide, promotes pre-osteoblast activity required for bone regeneration. Whether κ-carrageenan can functionalize OCP-coating to enhance osseointegration of titanium implants is unclear. This study aimed to analyze carrageenan-functionalized biomimetic OCP-coated titanium structure, and effects of carrageenan functionalization on pre-osteoblast behavior and osteogenic differentiation. Titanium discs were coated with OCP/κ-carrageenan at 0.125-2 mg/ml OCP solution, and physicochemical and biological properties were investigated. κ-Carrageenan (2 mg/ml) in the OCP coating of titanium discs decreased the pore size in the sheet-like OCP crystal by 41.32%. None of the κ-carrageenan concentrations tested in the OCP-coating did affect hydrophilicity. However, κ-carrageenan (2 mg/ml) increased (1.26-fold) MC3T3-E1 pre-osteoblast spreading at 1 h i.e., κ-Carrageenan in the OCP-coating increased pre-osteoblast proliferation (max. 1.92-fold at 2 mg/ml, day 1), metabolic activity (max. 1.50-fold at 2 mg/ml, day 3), and alkaline phosphatase protein (max. 4.21-fold at 2 mg/ml, day 3), as well as matrix mineralization (max. 5.45-fold at 2 mg/ml, day 21). κ-Carrageenan (2 mg/ml) in the OCP-coating increased gene expression of Mepe (4.93-fold) at day 14, and Runx2 (2.94-fold), Opn (3.59-fold), Fgf2 (3.47-fold), Ocn (3.88-fold), and Dmp1 (4.59-fold) at day 21 in pre-osteoblasts. In conclusion, κ-carrageenan modified the morphology and microstructure of OCP-coating on titanium discs, and enhanced pre-osteoblast metabolic activity, proliferation, and osteogenic differentiation. This suggests that κ-carrageenan-functionalized OCP coating may be promising for in vivo improvement of titanium implant osseointegration.

19.
Front Bioeng Biotechnol ; 10: 957263, 2022.
Article in English | MEDLINE | ID: mdl-36213076

ABSTRACT

The lack of bioactivity in three-dimensional (3D)-printing of poly-є-caprolactone (PCL) scaffolds limits cell-material interactions in bone tissue engineering. This constraint can be overcome by surface-functionalization using glycosaminoglycan-like anionic polysaccharides, e.g., carboxymethyl cellulose (CMC), a plant-based carboxymethylated, unsulfated polysaccharide, and κ-carrageenan, a seaweed-derived sulfated, non-carboxymethylated polysaccharide. The sulfation of CMC and carboxymethylation of κ-carrageenan critically improve their bioactivity. However, whether sulfated carboxymethyl cellulose (SCMC) and carboxymethyl κ-carrageenan (CM-κ-Car) affect the osteogenic differentiation potential of pre-osteoblasts on 3D-scaffolds is still unknown. Here, we aimed to assess the effects of surface-functionalization by SCMC or CM-κ-Car on the physicochemical and mechanical properties of 3D-printed PCL scaffolds, as well as the osteogenic response of pre-osteoblasts. MC3T3-E1 pre-osteoblasts were seeded on 3D-printed PCL scaffolds that were functionalized by CM-κ-Car (PCL/CM-κ-Car) or SCMC (PCL/SCMC), cultured up to 28 days. The scaffolds' physicochemical and mechanical properties and pre-osteoblast function were assessed experimentally and by finite element (FE) modeling. We found that the surface-functionalization by SCMC and CM-κ-Car did not change the scaffold geometry and structure but decreased the elastic modulus. Furthermore, the scaffold surface roughness and hardness increased and the scaffold became more hydrophilic. The FE modeling results implied resilience up to 2% compression strain, which was below the yield stress for all scaffolds. Surface-functionalization by SCMC decreased Runx2 and Dmp1 expression, while surface-functionalization by CM-κ-Car increased Cox2 expression at day 1. Surface-functionalization by SCMC most strongly enhanced pre-osteoblast proliferation and collagen production, while CM-κ-Car most significantly increased alkaline phosphatase activity and mineralization after 28 days. In conclusion, surface-functionalization by SCMC or CM-κ-Car of 3D-printed PCL-scaffolds enhanced pre-osteoblast proliferation and osteogenic activity, likely due to increased surface roughness and hydrophilicity. Surface-functionalization by SCMC most strongly enhanced cell proliferation, while CM-κ-Car most significantly promoted osteogenic activity, suggesting that surface-functionalization by CM-κ-Car may be more promising, especially in the short-term, for in vivo bone formation.

20.
Anal Chim Acta ; 1226: 340288, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36068069

ABSTRACT

As a member of reactive sulfur molecules, hydrogen polysulfide (H2Sn) plays a vital role in cell protection, anti-oxidative stress and regulation of redox signaling. The highly selective and sensitive detection of H2Sn was still challenging due to its special nucleophilic and electrophilic reactivity. By incorporating phenyl 2-(benzoylthio) benzoate into semi-naphthofluorescein, we developed a novel red emissive fluorescent probe SNAFL-H2Sn for the detection of a representative H2Sn (e. g. H2S2). The addition of H2S2 would rapidly trigger SNAFL-H2Sn to produce significant turn-on fluorescence signal changes at 626 nm with a linear response over a range of 2-30 µM and a detection limit of 16 nM. SNAFL-H2Sn was capable of mapping exogenous and endogenous H2S2 in living cells and zebrafish. Moreover, SNAFL-H2Sn was applied to detect endogenous H2S2 under atorvastatin stimulation. The present study demonstrated that SNAFL-H2Sn potentially served as a promising tool for interrogating H2Sn functions in biological systems.


Subject(s)
Fluorescent Dyes , Hydrogen Sulfide , Animals , Disulfides , Hydrogen , Hydrogen Sulfide/metabolism , Sulfides/metabolism , Up-Regulation , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL