Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.423
Filter
1.
J Med Virol ; 96(5): e29640, 2024 May.
Article in English | MEDLINE | ID: mdl-38699969

ABSTRACT

After the termination of zero-COVID-19 policy, the populace in China has experienced both Omicron BA.5 and XBB waves. Considering the poor antibody responses and severe outcomes observed among the elderly following infection, we conducted a longitudinal investigation to examine the epidemiological characteristics and antibody kinetics among 107 boosted elderly participants following the Omicron BA.5 and XBB waves. We observed that 96 participants (89.7%) were infected with Omicron BA.5, while 59 (55.1%) participants were infected with Omicron XBB. Notably, 52 participants (48.6%) experienced dual infections of both Omicron BA.5 and XBB. The proportion of symptomatic cases appeared to decrease following the XBB wave (18.6%) compared to that after the BA.5 wave (59.3%). Omicron BA.5 breakthrough infection induced lower neutralizing antibody titers against XBB.1.5, BA.2.86, and JN.1, while reinfection with Omicron XBB broadened the antibody responses against all measured Omicron subvariants and may alleviate the wild type-vaccination induced immune imprinting. Boosted vaccination type and comorbidities were the significant factors associated with antibody responses. Updated vaccines based on emerging severe acute respiratory syndrome coronavirus 2 variants are needed to control the Coronavirus Disease 2019 pandemic in the elderly.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Breakthrough Infections , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/prevention & control , COVID-19/epidemiology , China/epidemiology , Aged , Antibodies, Viral/blood , Male , Female , Antibodies, Neutralizing/blood , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Aged, 80 and over , Middle Aged , Longitudinal Studies , Vaccination
2.
Drugs R D ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700808

ABSTRACT

BACKGROUND AND OBJECTIVES: Despite significant progress in biomedical research, the rate of success in oncology drug development remains inferior to that of other therapeutic fields. Mechanistic models provide comprehensive understanding of the therapeutic effects of drugs, which is crucial for designing effective clinical trials. This study was performed to acquire a better understanding of PI3K-AKT-TOR pathway modulation and preclinical to clinical translational bridging for a specific compound, apitolisib (PI3K/mTOR inhibitor), by developing integrated mechanistic models. METHODS: Integrated pharmacokinetic (PK)-pharmacodynamic (PD)-efficacy models were developed for xenografts bearing human renal cell adenocarcinoma and for patients with solid tumors (phase 1 studies) to characterize relationships between exposure of apitolisib, modulation of the phosphorylated Akt (pAkt) biomarker triggered by inhibition of the PI3K-AKT-mTOR pathway, and tumor response. RESULTS: Both clinical and preclinical integrated models show a steep sigmoid curve linking pAkt inhibition to tumor growth inhibition and quantified that a minimum of 35-45% pAkt modulation is required for tumor shrinkage in patients, based on platelet-rich plasma surrogate matrix and in xenografts based on tumor tissue matrix. Based on this relationship between targeted pAkt modulation and tumor shrinkage rate, it appeared that a constant pAkt inhibition of 61% and 65%, respectively, would be necessary to achieve tumor stasis in xenografts and patients. CONCLUSIONS: These results help when it comes to evaluating the translatability of the preclinical analysis to the clinical target, and provide information that will enhance the value of future preclinical translational dose-finding and dose-optimization studies to accelerate clinical drug development. TRIAL REGISTRY: ClinicalTrials.gov NCT00854152 and NCT00854126.

3.
J Am Coll Cardiol ; 83(18): 1743-1755, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38692827

ABSTRACT

BACKGROUND: Lipoprotein(a) (Lp[a]) is associated with an increased risk of myocardial infarction (MI). However, the mechanism underlying this association has yet to be fully elucidated. OBJECTIVES: This multicenter study aimed to investigate whether association between Lp(a) and MI risk is reinforced by the presence of low-attenuation plaque (LAP) identified by coronary computed tomography angiography (CCTA). METHODS: In a derivation cohort, a total of 5,607 patients with stable chest pain suspected of coronary artery disease who underwent CCTA and Lp(a) measurement were prospectively enrolled. In validation cohort, 1,122 patients were retrospectively collected during the same period. High Lp(a) was defined as Lp(a) ≥50 mg/dL. The primary endpoint was a composite of time to fatal or nonfatal MI. Associations were estimated using multivariable Cox proportional hazard models. RESULTS: During a median follow-up of 8.2 years (Q1-Q3: 7.2-9.3 years), the elevated Lp(a) levels were associated with MI risk (adjusted HR [aHR]: 1.91; 95% CI: 1.46-2.49; P < 0.001). There was a significant interaction between Lp(a) and LAP (Pinteraction <0.001) in relation to MI risk. When stratified by the presence or absence of LAP, Lp(a) was associated with MI in patients with LAP (aHR: 3.03; 95% CI: 1.92-4.76; P < 0.001). Mediation analysis revealed that LAP mediated 73.3% (P < 0.001) for the relationship between Lp(a) and MI. The principal findings remained unchanged in the validation cohort. CONCLUSIONS: Elevated Lp(a) augmented the risk of MI during 8 years of follow-up, especially in patients with LAP identified by CCTA. The presence of LAP could reinforce the relationship between Lp(a) and future MI occurrence.


Subject(s)
Computed Tomography Angiography , Lipoprotein(a) , Myocardial Infarction , Plaque, Atherosclerotic , Humans , Male , Female , Lipoprotein(a)/blood , Myocardial Infarction/blood , Myocardial Infarction/epidemiology , Middle Aged , Plaque, Atherosclerotic/blood , Plaque, Atherosclerotic/diagnostic imaging , Aged , Coronary Angiography , Retrospective Studies , Coronary Artery Disease/blood , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/epidemiology , Prospective Studies , Follow-Up Studies , Biomarkers/blood
4.
Bioorg Chem ; 148: 107463, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38776649

ABSTRACT

Thrombosis leads to elevated mortality rates and substantial medical expenses worldwide. Human factor IXa (HFIXa) protease is pivotal in tissue factor (TF)-mediated thrombin generation, and represents a promising target for anticoagulant therapy. We herein isolated novel DNA aptamers that specifically bind to HFIXa through systematic evolution of ligands by exponential enrichment (SELEX) method. We identified two distinct aptamers, seq 5 and seq 11, which demonstrated high binding affinity to HFIXa (Kd = 74.07 ± 2.53 nM, and 4.93 ± 0.15 nM, respectively). Computer software was used for conformational simulation and kinetic analysis of DNA aptamers and HFIXa binding. These aptamers dose-dependently prolonged activated partial thromboplastin time (aPTT) in plasma. We further rationally optimized the aptamers by truncation and site-directed mutation, and generated the truncated forms (Seq 5-1t, Seq 11-1t) and truncated-mutated forms (Seq 5-2tm, Seq 11-2tm). They also showed good anticoagulant effects. The rationally and structurally designed antidotes (seq 5-2b and seq 11-2b) were competitively bound to the DNA aptamers and effectively reversed the anticoagulant effect. This strategy provides DNA aptamer drug-antidote pair with effective anticoagulation and rapid reversal, developing advanced therapies by safe, regulatable aptamer drug-antidote pair.

5.
J Agric Food Chem ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778434

ABSTRACT

Polysaccharides derived from Agrocybe cylindracea have been demonstrated to exhibit various bioactivities. However, studies on their structural characteristics during the growth process are limited. This study aimed to compare the physicochemical properties and structural characteristics of alkali-extracted polysaccharides from A. cylindracea fruiting bodies (JACP) across four growth stages. Results showed that the extraction yields and protein levels of JACP declined along with the growth of A. cylindracea, while the contents of neutral sugar and glucose increased significantly. However, JACP exhibited structural characteristics similar to those across the four stages. Four polysaccharide subfractions were isolated from each growth stage, including JACP-Et30, JACP-Et50, JACP-Et60, and JACP-Et70. JACP-Et30 from the four stages and JACP-Et50 from the initial three stages were identified as heteroglucans with ß-1,3-d-Glcp and ß-1,6-d-Glcp residues as main chains, respectively. However, other subfractions were considered as ß-1,6-d-glucans containing minor glucuronic acid. These subfractions were predominantly replaced by Glcp residues at the O-3 and O-6 positions. Overall, while JACP exhibited variable physicochemical properties, its structural characteristics remained stable during the growth process, offering new insights into its potential applications in the food and medicinal industries.

6.
Magn Reson Med ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778631

ABSTRACT

PURPOSE: QSM provides insight into healthy brain aging and neuropathologies such as multiple sclerosis (MS), traumatic brain injuries, brain tumors, and neurodegenerative diseases. Phase data for QSM are usually acquired from 3D gradient-echo (3D GRE) scans with long acquisition times that are detrimental to patient comfort and susceptible to patient motion. This is particularly true for scans requiring whole-brain coverage and submillimeter resolutions. In this work, we use a multishot 3D echo plannar imaging (3D EPI) sequence with shot-selective 2D CAIPIRIHANA to acquire high-resolution, whole-brain data for QSM with minimal distortion and blurring. METHODS: To test clinical viability, the 3D EPI sequence was used to image a cohort of MS patients at 1-mm isotropic resolution at 3 T. Additionally, 3D EPI data of healthy subjects were acquired at 1-mm, 0.78-mm, and 0.65-mm isotropic resolution with varying echo train lengths (ETLs) and compared with a reference 3D GRE acquisition. RESULTS: The appearance of the susceptibility maps and the susceptibility values for segmented regions of interest were comparable between 3D EPI and 3D GRE acquisitions for both healthy and MS participants. Additionally, all lesions visible in the MS patients on the 3D GRE susceptibility maps were also visible on the 3D EPI susceptibility maps. The interplay among acquisition time, resolution, echo train length, and the effect of distortion on the calculated susceptibility maps was investigated. CONCLUSION: We demonstrate that the 3D EPI sequence is capable of rapidly acquiring submillimeter resolutions and providing high-quality, clinically relevant susceptibility maps.

7.
Sci Rep ; 14(1): 10227, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702443

ABSTRACT

Hydrolyzed egg yolk peptide (YPEP) was shown to increase bone mineral density in ovariectomized rats. However, the underlying mechanism of YPEP on osteoporosis has not been explored. Recent studies have shown that Wnt/ß-catenin signaling pathway and gut microbiota may be involved in the regulation of bone metabolism and the progression of osteoporosis. The present study aimed to explore the preventive effect of the YPEP supplementation on osteoporosis in ovariectomized (OVX) rats and to verify whether YPEP can improve osteoporosis by regulating Wnt/ß-catenin signaling pathway and gut microbiota. The experiment included five groups: sham surgery group (SHAM), ovariectomy group (OVX), 17-ß estradiol group (E2: 25 µg /kg/d 17ß-estradiol), OVX with low-dose YPEP group (LYPEP: 10 mg /kg/d YPEP) and OVX with high-dose YPEP group (HYPEP: 40 mg /kg/d YPEP). In this study, all the bone samples used were femurs. Micro-CT analysis revealed improvements in both bone mineral density (BMD) and microstructure by YPEP treatment. The three-point mechanical bending test indicated an enhancement in the biomechanical properties of the YPEP groups. The serum levels of bone alkaline phosphatase (BALP), bone gla protein (BGP), calcium (Ca), and phosphorus (P) were markedly higher in the YPEP groups than in the OVX group. The LYPEP group had markedly lower levels of alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) and C-terminal telopeptide of type I collagen (CTX-I) than the OVX group. The YPEP groups had significantly higher protein levels of the Wnt3a, ß-catenin, LRP5, RUNX2 and OPG of the Wnt/ß-catenin signaling pathway compared with the OVX group. Compared to the OVX group, the ratio of OPG/RANKL was markedly higher in the LYPEP group. At the genus level, there was a significantly increase in relative abundance of Lachnospiraceae_NK4A136_group and a decrease in Escherichia_Shigella in YPEP groups, compared with the OVX group. However, in the correlation analysis, there was no correlation between these two bacteria and bone metabolism and microstructure indexes. These findings demonstrate that YPEP has the potential to improve osteoporosis, and the mechanism may be associated with its modulating effect on Wnt/ß-catenin signaling pathway.


Subject(s)
Bone Density , Osteoporosis , Ovariectomy , Wnt Signaling Pathway , Animals , Female , Rats , Alkaline Phosphatase/metabolism , beta Catenin/metabolism , Bone Density/drug effects , Egg Proteins/pharmacology , Egg Proteins/metabolism , Egg Yolk/chemistry , Egg Yolk/metabolism , Femur/drug effects , Femur/metabolism , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Osteoporosis/prevention & control , Osteoporosis/metabolism , Peptides/pharmacology , Rats, Sprague-Dawley , Wnt Signaling Pathway/drug effects , X-Ray Microtomography
8.
Protein Sci ; 33(6): e5021, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38747394

ABSTRACT

While nickel-nitrilotriacetic acid (Ni-NTA) has greatly advanced recombinant protein purification, its limitations, including nonspecific binding and partial purification for certain proteins, highlight the necessity for additional purification such as size exclusion and ion exchange chromatography. However, specialized equipment such as FPLC is typically needed but not often available in many laboratories. Here, we show a novel method utilizing polyphosphate (polyP) for purifying proteins with histidine repeats via non-covalent interactions. Our study demonstrates that immobilized polyP efficiently binds to histidine-tagged proteins across a pH range of 5.5-7.5, maintaining binding efficacy even in the presence of reducing agent DTT and chelating agent EDTA. We carried out experiments of purifying various proteins from cell lysates and fractions post-Ni-NTA. Our results demonstrate that polyP resin is capable of further purification post-Ni-NTA without the need for specialized equipment and without compromising protein activity. This cost-effective and convenient method offers a viable approach as a complementary approach to Ni-NTA.


Subject(s)
Histidine , Polyphosphates , Histidine/chemistry , Polyphosphates/chemistry , Polyphosphates/metabolism , Nitrilotriacetic Acid/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Humans , Proteins/chemistry , Proteins/isolation & purification
9.
Biomolecules ; 14(5)2024 May 12.
Article in English | MEDLINE | ID: mdl-38785979

ABSTRACT

The balance between ubiquitination and deubiquitination is instrumental in the regulation of protein stability and maintenance of cellular homeostasis. The deubiquitinating enzyme, ubiquitin-specific protease 36 (USP36), a member of the USP family, plays a crucial role in this dynamic equilibrium by hydrolyzing and removing ubiquitin chains from target proteins and facilitating their proteasome-dependent degradation. The multifaceted functions of USP36 have been implicated in various disease processes, including cancer, infections, and inflammation, via the modulation of numerous cellular events, including gene transcription regulation, cell cycle regulation, immune responses, signal transduction, tumor growth, and inflammatory processes. The objective of this review is to provide a comprehensive summary of the current state of research on the roles of USP36 in different pathological conditions. By synthesizing the findings from previous studies, we have aimed to increase our understanding of the mechanisms underlying these diseases and identify potential therapeutic targets for their treatment.


Subject(s)
Neoplasms , Ubiquitin Thiolesterase , Humans , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/enzymology , Neoplasms/pathology , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Animals , Ubiquitination , Inflammation/metabolism , Signal Transduction , Ubiquitin/metabolism
10.
Bioorg Chem ; 147: 107400, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688196

ABSTRACT

Although certain members of the Ubiquitin-specific peptidases (USPs) have been recognized as promising therapeutic targets for various diseases, research progress regarding USP21 has been relatively sluggish in its early stages. USP21 is a crucial member of the USPs subfamily, involved in diverse cellular processes such as apoptosis, DNA repair, and signal transduction. Research findings from the past decade demonstrate that USP21 mediates the deubiquitination of multiple well-known target proteins associated with critical cellular processes relevant to both disease and homeostasis, particularly in various cancers.This reviewcomprehensively summarizes the structure and biological functions of USP21 with an emphasis on its role in tumorigenesis, and elucidates the advances on the discovery of tens of small-molecule inhibitors targeting USP21, which suggests that targeting USP21 may represent a potential strategy for cancer therapy.


Subject(s)
Neoplasms , Ubiquitin Thiolesterase , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Animals , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Molecular Structure
11.
Dev Cell ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38582082

ABSTRACT

The commitment and differentiation of human placental progenitor cytotrophoblast (CT) cells are crucial for a successful pregnancy, but the underlying mechanism remains poorly understood. Here, we identified the transcription factor (TF), specificity protein 6 (SP6), as a human species-specific trophoblast lineage TF expressed in human placental CT cells. Using pluripotent stem cells as a model, we demonstrated that SP6 controls CT generation and the establishment of trophoblast stem cells (TSCs) and identified msh homeobox 2 (MSX2) as the downstream effector in these events. Mechanistically, we showed that SP6 interacts with histone acetyltransferase P300 to alter the landscape of H3K27ac at targeted regulatory elements, thereby favoring transcriptional activation and facilitating CT cell fate decisions and TSC maintenance. Our results established SP6 as a regulator of the human trophoblast lineage and implied its role in placental development and the pathogenies of placental diseases.

12.
J Clin Pharmacol ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639108

ABSTRACT

Cancer remains a significant global health challenge, and despite remarkable advancements in therapeutic strategies, poor tolerability of drugs (causing dose reduction/interruptions) and/or the emergence of drug resistance are major obstacles to successful treatment outcomes. Metastatic renal cell carcinoma (mRCC) accounts for 2% of global cancer diagnoses and deaths. Despite the initial success of targeted therapies in mRCC, challenges remain to overcome drug resistance that limits the long-term efficacy of these treatments. Our analysis aim was to develop a semi-mechanistic longitudinal exposure-tumor growth inhibition model for patients with mRCC to characterize and compare everolimus (mTORC1) and apitolisib's (dual PI3K/mTORC1/2) ability to inhibit tumor growth, and quantitate each drug's efficacy decay caused by emergence of tumor resistance over time. Model-estimated on-treatment tumor growth rate constant was 1.7-fold higher for apitolisib compared to everolimus. Estimated half-life for loss of treatment effect over time for everolimus was 16.1 weeks compared to 7.72 weeks for apitolisib, suggesting a faster rate of tumor re-growth for apitolisib patients likely due to the emergence of resistance. Goodness-of-fit plots including visual predictive check indicated a good model fit and the model was able to capture individual tumor size-time profiles. Based on our knowledge, this is the first clinical report to quantitatively assess everolimus (mTORC1) and apitolisib (PI3K/mTORC1/2) efficacy decay in patients with mRCC. These results highlight the difference in overall efficacy of 2 drugs due to the quantified efficacy decay caused by emergence of resistance, and emphasize the importance of model-informed drug development for targeted cancer therapy.

13.
Cell Genom ; 4(4): 100539, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38604127

ABSTRACT

Polygenic risk scores (PRSs) are now showing promising predictive performance on a wide variety of complex traits and diseases, but there exists a substantial performance gap across populations. We propose MUSSEL, a method for ancestry-specific polygenic prediction that borrows information in summary statistics from genome-wide association studies (GWASs) across multiple ancestry groups via Bayesian hierarchical modeling and ensemble learning. In our simulation studies and data analyses across four distinct studies, totaling 5.7 million participants with a substantial ancestral diversity, MUSSEL shows promising performance compared to alternatives. For example, MUSSEL has an average gain in prediction R2 across 11 continuous traits of 40.2% and 49.3% compared to PRS-CSx and CT-SLEB, respectively, in the African ancestry population. The best-performing method, however, varies by GWAS sample size, target ancestry, trait architecture, and linkage disequilibrium reference samples; thus, ultimately a combination of methods may be needed to generate the most robust PRSs across diverse populations.


Subject(s)
Bivalvia , Multifactorial Inheritance , Humans , Animals , Multifactorial Inheritance/genetics , Genome-Wide Association Study/methods , Bayes Theorem , Phenotype , Genetic Risk Score
14.
Int J Gen Med ; 17: 1493-1498, 2024.
Article in English | MEDLINE | ID: mdl-38655006

ABSTRACT

Objective: To investigate the risk factors for the development of portal hypertension in patients with decompensated cirrhosis and analyze their prognosis. Methods: Patients with decompensated cirrhosis who were admitted to our hospital and Qu fu People's Hospital from June 2022 to June 2023 were included in this study. Among them, there were 45 male and 15 female patients, with a median age of 56 (range: 35-77) years. A comparative analysis was performed between Group A (hepatic venous pressure gradient, HVPG <16 mmHg) and Group B (HVPG ≥16 mmHg) patients, along with various clinical outcomes. Multivariate analysis was conducted to explore the risk factors influencing the occurrence of portal hypertension and adverse prognosis in patients with cirrhosis. Results: In Group A patients with portal hypertension, we observed lower levels of aspartate aminotransferase, laminin, serum hyaluronic acid, type III procollagen N-terminal peptide, total bile acids, and cholylglycine acid compared to Group B. On the other hand, levels of alanine aminotransferase, white blood cells, and serum albumin were higher in Group A than in Group B. These differences between the groups were statistically significant (P < 0.05). Multivariate analysis of the aforementioned risk factors indicated that low white blood cell count, high cholylglycine acid levels, and high serum hyaluronic acid levels were identified as independent risk factors for the occurrence of difficult-to-control complications in decompensated portal hypertension among patients with liver cirrhosis (P < 0.05). Conclusion: Liver cirrhosis patients with portal hypertension and multiple risk factors like low white blood cell count and high liver transaminase levels should be cautious regarding the progression of portal hypertension when combined with splenomegaly, liver fibrosis, and bile stasis, as it often indicates a poor prognosis.

15.
Sci Total Environ ; 926: 172125, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38565353

ABSTRACT

Despite both microplastics (MPs) and harmful algae blooms (HABs) may pose a severe threat to the immunity of marine bivalves, the toxification mechanism underlying is far from being fully understood. In addition, owing to the prevalence and sudden occurrence characteristics of MPs and HABs, respectively, bivalves with MP-exposure experience may face acute challenge of harmful algae under realistic scenarios. However, little is known about the impacts and underlying mechanisms of MP-exposure experience on the susceptibility of immunity to HABs in bivalve mollusks. Taking polystyrene MPs and diarrhetic shellfish toxin-producing Prorocentrum lima as representatives, the impacts of MP-exposure on immunity vulnerability to HABs were investigated in the thick-shell mussel, Mytilus coruscus. Our results revealed evident immunotoxicity of MPs and P. lima to the mussel, as evidenced by significantly impaired total count, phagocytic activity, and cell viability of haemocytes, which may result from the induction of oxidative stress, aggravation of haemocyte apoptosis, and shortage in cellular energy supply. Moreover, marked disruptions of immunity, antioxidant system, apoptosis regulation, and metabolism upon MPs and P. lima exposure were illustrated by gene expression and comparative metabolomic analyses. Furthermore, the mussels that experienced MP-exposure were shown to be more vulnerable to P. lima, indicated by greater degree of deleterious effects on abovementioned parameters detected. In general, our findings emphasize the threat of MPs and HABs to bivalve species, which deserves close attention and more investigation.


Subject(s)
Marine Toxins , Mytilus , Animals , Marine Toxins/toxicity , Microplastics/metabolism , Plastics/metabolism , Mytilus/metabolism , Shellfish
16.
Nat Commun ; 15(1): 3238, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622117

ABSTRACT

Great efforts are being made to develop advanced polygenic risk scores (PRS) to improve the prediction of complex traits and diseases. However, most existing PRS are primarily trained on European ancestry populations, limiting their transferability to non-European populations. In this article, we propose a novel method for generating multi-ancestry Polygenic Risk scOres based on enSemble of PEnalized Regression models (PROSPER). PROSPER integrates genome-wide association studies (GWAS) summary statistics from diverse populations to develop ancestry-specific PRS with improved predictive power for minority populations. The method uses a combination of L 1 (lasso) and L 2 (ridge) penalty functions, a parsimonious specification of the penalty parameters across populations, and an ensemble step to combine PRS generated across different penalty parameters. We evaluate the performance of PROSPER and other existing methods on large-scale simulated and real datasets, including those from 23andMe Inc., the Global Lipids Genetics Consortium, and All of Us. Results show that PROSPER can substantially improve multi-ancestry polygenic prediction compared to alternative methods across a wide variety of genetic architectures. In real data analyses, for example, PROSPER increased out-of-sample prediction R2 for continuous traits by an average of 70% compared to a state-of-the-art Bayesian method (PRS-CSx) in the African ancestry population. Further, PROSPER is computationally highly scalable for the analysis of large SNP contents and many diverse populations.


Subject(s)
Genome-Wide Association Study , Population Health , Humans , Bayes Theorem , Multifactorial Inheritance/genetics , Black People/genetics , Genetic Risk Score , Risk Factors
17.
Phytochemistry ; 222: 114096, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641141

ABSTRACT

Forsythiae Fructus (FF), the dried fruit of F. suspensa, is commonly used to treat fever, inflammation, etc in China or other Asian countries. FF is usually used as the core herb in traditional Chinese medicine preparations for the treatment of influenza, such as Shuang-huang-lian oral liquid and Yin-qiao powder, etc. Since the wide application and core role of FF, its research progress was summarized in terms of traditional uses, phytochemistry, pharmacology, pharmacokinetics, quality control, and toxicity. Meanwhile, the anti-influenza substances and mechanism of FF were emphasized. Till now, a total of 290 chemical components are identified in F. suspensa, and among them, 248 components were isolated and identified from FF, including 42 phenylethanoid glycosides, 48 lignans, 59 terpenoids, 14 flavonoids, 3 steroids, 24 cyclohexyl ethanol derivatives, 14 alkaloids, 26 organic acids, and 18 other types. FF and their pure compounds have the pharmacological activities of anti-virus, anti-inflammation, anti-oxidant, anti-bacteria, anti-tumor, neuroprotection, hepatoprotection, etc. Inhibition of TLR7, RIG-I, MAVS, NF-κB, MyD88 signaling pathway were the reported anti-influenza mechanisms of FF and phenylethanoid glycosides and lignans are the main active groups. However, the bioavailability of phenylethanoid glycosides and lignans of FF in vivo was low, which needed to be improved. Simultaneously, the un-elucidated compounds and anti-influenza substances of FF strongly needed to be explored. The current quality control of FF was only about forsythoside A and phillyrin, more active components should be taken into consideration. Moreover, there are no reports of toxicity of FF yet, but the toxicity of FF should be not neglected in clinical applications.


Subject(s)
Forsythia , Quality Control , Forsythia/chemistry , Humans , Fruit/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/isolation & purification , Animals , Molecular Structure
18.
Int J Biol Macromol ; 269(Pt 1): 131799, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38677677

ABSTRACT

Polysaccharides are the important bioactive macromolecules in Agrocybe cylindracea, but their changes are as yet elusive during developmental process. This study investigated the dynamic changes of polysaccharides from A. cylindracea fruiting body water extract at four developmental stages and its structure characteristics. Results revealed that the polysaccharides from A. cylindracea water extract significantly increased at the pileus expansion stage and the increased fraction could be α-glucan. The further purification and identification indicated that this α-glucan was a glycogen. It had typical morphology of ß particles with a molecular weight of 1375 kDa. Its backbone comprised α-D-(1 â†’ 4)-Glcp and α-D-(1 â†’ 4,6)-Glcp residues at a ratio of 5:1, terminated by α-D-Glcp residue. Rheological behavior suggested that it was a Newtonian fluid at the concentration of 1 %. In addition, despite both the glycogen and natural starch were composed of D-glucose, they exhibited the entirely distinct Maltese cross characteristic and unique crystalline structure. This study is the first to demonstrate the presence of abundant glycogen in the pileus expansion stage of A. cylindracea, which provides new insights on the change patterns of fungal polysaccharides.

19.
Article in English | MEDLINE | ID: mdl-38629452

ABSTRACT

Model-based tumor growth inhibition (TGI) metrics are increasingly used to predict overall survival (OS) data in Phase III immunotherapy clinical trials. However, there is still a lack of understanding regarding the differences between two-stage or joint modeling methods to leverage Phase I/II trial data and help early decision-making. A recent study showed that TGI metrics such as the tumor growth rate constant KG may have good operating characteristics as early endpoints. This previous study used a two-stage approach that is easy to implement and intuitive but prone to bias as it does not account for the relationship between the longitudinal and time-to-event processes. A relevant alternative is to use a joint modeling approach. In the present article, we evaluated the operating characteristics of TGI metrics using joint modeling, assuming an OS model previously developed using historical data. To that end, we used TGI and OS data from IMpower150-a study investigating atezolizumab in over 750 patients suffering from non-small cell lung cancer-to mimic randomized Phase Ib/II trials varying in terms of number of patients included (40 to 15 patients per arm) and follow-up duration (24 to 6 weeks after the last patient included). In this context, joint modeling did not outperform the two-stage approach and provided similar operating characteristics in all the investigated scenarios. Our results suggest that KG geometric mean ratio could be used to support early decision-making provided that 30 or more patients per arm are included and followed for at least 12 weeks.

20.
Ecotoxicol Environ Saf ; 276: 116334, 2024 May.
Article in English | MEDLINE | ID: mdl-38626607

ABSTRACT

Thioacetamide (TAA) within the liver generates hepatotoxic metabolites that can be induce hepatic fibrosis, similar to the clinical pathological features of chronic human liver disease. The potential protective effect of Albiflorin (ALB), a monoterpenoid glycoside found in Paeonia lactiflora Pall, against hepatic fibrosis was investigated. The mouse hepatic fibrosis model was induced with an intraperitoneal injection of TAA. Hepatic stellate cells (HSCs) were subjected to treatment with transforming growth factor-beta (TGF-ß), while lipopolysaccharide/adenosine triphosphate (LPS/ATP) was added to stimulate mouse peritoneal macrophages (MPMs), leading to the acquisition of conditioned medium. For TAA-treated mice, ALB reduced ALT, AST, HYP levels in serum or liver. The administration of ALB reduced histopathological abnormalities, and significantly regulated the expressions of nuclear receptor-related 1 protein (NURR1) and the P2X purinoceptor 7 receptor (P2×7r) in liver. ALB could suppress HSCs epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) deposition, and pro-inflammatory factor level. ALB also remarkably up-regulated NURR1, inhibited P2×7r signaling pathway, and worked as working as C-DIM12, a NURR1 agonist. Moreover, deficiency of NURR1 in activated HSCs and Kupffer cells weakened the regulatory effect of ALB on P2×7r inhibition. NURR1-mediated inhibition of inflammatory contributed to the regulation of ALB ameliorates TAA-induced hepatic fibrosis, especially based on involving in the crosstalk of HSCs-macrophage. Therefore, ALB plays a significant part in the mitigation of TAA-induced hepatotoxicity this highlights the potential of ALB as a protective intervention for hepatic fibrosis.


Subject(s)
Hepatic Stellate Cells , Liver Cirrhosis , Nuclear Receptor Subfamily 4, Group A, Member 2 , Signal Transduction , Thioacetamide , Animals , Thioacetamide/toxicity , Hepatic Stellate Cells/drug effects , Mice , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Signal Transduction/drug effects , Male , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Bridged-Ring Compounds/pharmacology , Mice, Inbred C57BL , Inflammation/chemically induced , Inflammation/drug therapy , Epithelial-Mesenchymal Transition/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...