Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.145
Filter
1.
Nucleic Acids Res ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742642

ABSTRACT

MicroRNAs (miRNAs) play crucial regulatory roles in controlling immune responses, but their dynamic expression mechanisms are poorly understood. Here, we firstly confirm that the conserved miRNA miR-210 negatively regulates innate immune responses of Drosophila and human via targeting Toll and TLR6, respectively. Secondly, our findings demonstrate that the expression of miR-210 is dynamically regulated by NF-κB factor Dorsal in immune response of Drosophila Toll pathway. Thirdly, we find that Dorsal-mediated transcriptional inhibition of miR-210 is dependent on the transcriptional repressor Su(Hw). Mechanistically, Dorsal interacts with Su(Hw) to modulate cooperatively the dynamic expression of miR-210 in a time- and dose-dependent manner, thereby controlling the strength of Drosophila Toll immune response and maintaining immune homeostasis. Fourthly, we reveal a similar mechanism in human cells, where NF-κB/RelA cooperates with E4F1 to regulate the dynamic expression of hsa-miR-210 in the TLR immune response. Overall, our study reveals a conservative regulatory mechanism that maintains animal innate immune homeostasis and provides new insights into the dynamic regulation of miRNA expression in immune response.

2.
BMC Genomics ; 25(1): 431, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693480

ABSTRACT

Ophthalmic manifestations have recently been observed in acute and post-acute complications of COVID-19 caused by SARS-CoV-2 infection. Our precious study has shown that host RNA editing is linked to RNA viral infection, yet ocular adenosine to inosine (A-to-I) RNA editing during SARS-CoV-2 infection remains uninvestigated in COVID-19. Herein we used an epitranscriptomic pipeline to analyze 37 samples and investigate A-to-I editing associated with SARS-CoV-2 infection, in five ocular tissue types including the conjunctiva, limbus, cornea, sclera, and retinal organoids. Our results revealed dramatically altered A-to-I RNA editing across the five ocular tissues. Notably, the transcriptome-wide average level of RNA editing was increased in the cornea but generally decreased in the other four ocular tissues. Functional enrichment analysis showed that differential RNA editing (DRE) was mainly in genes related to ubiquitin-dependent protein catabolic process, transcriptional regulation, and RNA splicing. In addition to tissue-specific RNA editing found in each tissue, common RNA editing was observed across different tissues, especially in the innate antiviral immune gene MAVS and the E3 ubiquitin-protein ligase MDM2. Analysis in retinal organoids further revealed highly dynamic RNA editing alterations over time during SARS-CoV-2 infection. Our study thus suggested the potential role played by RNA editing in ophthalmic manifestations of COVID-19, and highlighted its potential transcriptome impact, especially on innate immunity.


Subject(s)
COVID-19 , RNA Editing , SARS-CoV-2 , Humans , COVID-19/genetics , COVID-19/virology , SARS-CoV-2/genetics , Adenosine/metabolism , Inosine/metabolism , Inosine/genetics , Transcriptome , Eye/metabolism , Eye/virology
3.
ACS Appl Bio Mater ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38699864

ABSTRACT

Mosquito-borne viruses are a major worldwide health problem associated with high morbidity and mortality rates and significant impacts on national healthcare budgets. The development of antiviral drugs for both the treatment and prophylaxis of these diseases is thus of considerable importance. To address the need for therapeutics with antiviral activity, a library of heparan sulfate mimetic polymers was screened against dengue virus (DENV), Yellow fever virus (YFV), Zika virus (ZIKV), and Ross River virus (RRV). The polymers were prepared by RAFT polymerization of various acidic monomers with a target MW of 20 kDa (average Mn ∼ 27 kDa by GPC). Among the polymers, poly(SS), a homopolymer of sodium styrenesulfonate, was identified as a broad spectrum antiviral with activity against all the tested viruses and particularly potent inhibition of YFV (IC50 = 310 pM). Our results further uncovered that poly(SS) exhibited a robust inhibition of ZIKV infection in both mosquito and human cell lines, which points out the potential functions of poly(SS) in preventing mosquito-borne viruses associated diseases by blocking viral transmission in their mosquito vectors and mitigating viral infection in patients.

4.
Transl Cancer Res ; 13(4): 1642-1664, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38737683

ABSTRACT

Background: The adenosine triphosphate-binding-cassette (ABC) transporter orchestrates the transmembrane transport of diverse substrates with the aid of ATP as an energy source. ABC transporter constitutes a widespread superfamily of transporters prominently present on the cellular membrane of organisms. Advancements in understanding have unveiled additional roles beyond mere intracellular or extracellular transport functions for the ABC protein family, encompassing involvement in DNA repair, protein translation, and gene expression regulation. Yet its role in tumors is still unknown. Methods: This study drew support from multiple databases, including Gene Expression Omnibus (GEO), European Genome-phenome Archive (EGA), The Cancer Genome Atlas (TCGA), and employed multidimensional bioinformatics analyses, incorporating online databases and the R-project. Through a comprehensive analysis, we seek to discern transcriptional-level disparities among genes and their consequential impacts on prognosis, tumor microenvironment (TME), stemness score, immune subtypes, clinical characteristics, and drug sensitivity across human cancers. Results: ABC transporter subfamily B (ABCB) family genes exhibited heightened expression across diverse tumors, demonstrating a significant correlation with overall prognosis in pan-cancer contexts. Notably, gene expression levels manifested substantial associations with TME, stemness score, immune subtypes, clinical characteristics, and drug sensitivity in specific cancers, including kidney renal papillary cell carcinoma (KIRP), liver hepatocellular carcinoma (LIHC), and pancreatic adenocarcinoma (PAAD). Within this subset, transporter associated with antigen processing 1 (TAP1), TAP2, and ABCB6 emerged as noteworthy oncogenes. Conclusions: The outcomes of this study contribute to a comprehensive understanding of the implications of ABCB family genes in tumor progression, offering insights into potential therapeutic targets for cancer. Notably, the identification of ABCB6 as a significant oncogene suggests promising avenues for targeted therapies in KIRP, LIHC, and PAAD.

5.
MedComm (2020) ; 5(5): e542, 2024 May.
Article in English | MEDLINE | ID: mdl-38660685

ABSTRACT

Aging exhibits several hallmarks in common with cancer, such as cellular senescence, dysbiosis, inflammation, genomic instability, and epigenetic changes. In recent decades, research into the role of cellular senescence on tumor progression has received widespread attention. While how senescence limits the course of cancer is well established, senescence has also been found to promote certain malignant phenotypes. The tumor-promoting effect of senescence is mainly elicited by a senescence-associated secretory phenotype, which facilitates the interaction of senescent tumor cells with their surroundings. Targeting senescent cells therefore offers a promising technique for cancer therapy. Drugs that pharmacologically restore the normal function of senescent cells or eliminate them would assist in reestablishing homeostasis of cell signaling. Here, we describe cell senescence, its occurrence, phenotype, and impact on tumor biology. A "one-two-punch" therapeutic strategy in which cancer cell senescence is first induced, followed by the use of senotherapeutics for eliminating the senescent cells is introduced. The advances in the application of senotherapeutics for targeting senescent cells to assist cancer treatment are outlined, with an emphasis on drug categories, and the strategies for their screening, design, and efficient targeting. This work will foster a thorough comprehension and encourage additional research within this field.

6.
Surg Innov ; 31(3): 256-262, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38565982

ABSTRACT

OBJECTIVE: In this case report, the auxiliary role of deep learning and 3-dimensional printing technology in the perioperative period was discussed to guide transcatheter aortic valve replacement and coronary stent implantation simultaneously. CASE PRESENTATION: A 68-year-old man had shortness of breath and chest tightness, accompanied by paroxysmal nocturnal dyspnea, 2 weeks before presenting at our hospital. Echocardiography results obtained in the outpatient department showed severe aortic stenosis combined with regurgitation and pleural effusion. The patient was first treated with closed thoracic drainage. After 800 mL of pleural effusion was collected, the patient's symptoms were relieved and he was admitted to the hospital. Preoperative transthoracic echocardiography showed severe bicuspid aortic valve stenosis combined with calcification and aortic regurgitation (mean pressure gradient, 42 mmHg). Preoperative computed tomography results showed a type I bicuspid aortic valve with severe eccentric calcification. The leaflet could be seen from the left coronary artery plane, which indicated an extremely high possibility of coronary obstruction. After preoperative imaging assessment, deep learning and 3-dimensional printing technology were used for evaluation and simulation. Guided transcatheter aortic valve replacement and a coronary stent implant were completed successfully. Postoperative digital subtraction angiography showed that the bioprosthesis and the chimney coronary stent were in ideal positions. Transesophageal echocardiography showed normal morphology without paravalvular regurgitation. CONCLUSION: The perioperative guidance of deep learning and 3-dimensional printing are of great help for surgical strategy formulation in patients with severe bicuspid aortic valve stenosis with calcification and high-risk coronary obstruction.


Subject(s)
Aortic Valve Stenosis , Deep Learning , Printing, Three-Dimensional , Transcatheter Aortic Valve Replacement , Humans , Transcatheter Aortic Valve Replacement/methods , Male , Aged , Aortic Valve Stenosis/surgery , Aortic Valve Stenosis/diagnostic imaging , Stents , Aortic Valve/surgery , Aortic Valve/diagnostic imaging , Aortic Valve/abnormalities , Aortic Valve Insufficiency/surgery , Aortic Valve Insufficiency/diagnostic imaging
7.
J Transl Med ; 22(1): 384, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659083

ABSTRACT

BACKGROUND: Chimeric antigen receptor (CAR) T-cells have demonstrated significant efficacy in targeting hematological malignancies, and their use continues to expand. Despite substantial efforts spent on the optimization of protocols for CAR T-cell manufacturing, critical parameters of cell culture such as pH or oxygenation are rarely actively monitored during cGMP CAR T-cell generation. A comprehensive understanding of the role that these factors play in manufacturing may help in optimizing patient-specific CAR T-cell therapy with maximum benefits and minimal toxicity. METHODS: This retrospective study examined cell culture supernatants from the manufacture of CAR T-cells for 20 patients with B-cell malignancies enrolled in a phase 1/2 clinical trial of anti-CD22 CAR T-cells. MetaFLEX was used to measure supernatant pH, oxygenation, and metabolites, and a Bio-Plex assay was used to assess protein levels. Correlations were assessed between the pH of cell culture media throughout manufacturing and cell proliferation as well as clinical outcomes. Next-generation sequencing was conducted to examine gene expression profiles of the final CAR T-cell products. RESULTS: A pH level at the lower range of normal at the beginning of the manufacturing process significantly correlated with measures of T-cell expansion and metabolism. Stable or rising pH during the manufacturing process was associated with clinical response, whereas a drop in pH was associated with non-response. CONCLUSIONS: pH has potential to serve as an informative factor in predicting CAR T-cell quality and clinical outcomes. Thus, its active monitoring during manufacturing may ensure a more effective CAR T-cell product.


Subject(s)
Sialic Acid Binding Ig-like Lectin 2 , T-Lymphocytes , Humans , Hydrogen-Ion Concentration , T-Lymphocytes/immunology , Sialic Acid Binding Ig-like Lectin 2/metabolism , Receptors, Chimeric Antigen/metabolism , Cell Proliferation , Cell Culture Techniques
8.
Quant Imaging Med Surg ; 14(4): 3075-3085, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38617141

ABSTRACT

Background: Primary dysmenorrhea (PDM) is the most common problem in menstruating women. A number of functional magnetic resonance imaging (fMRI) study have revealed that the brain plays a crucial role in the pathophysiology of PDM. However, these results have been inconsistent, and there is a lack of a comprehensive fMRI study to clarify the onset and long-term effects of PDM. The aim of this study was thus to investigate the onset and long-term effects of PDM in a cohort of patients with PDM. Methods: This study employed a cross-sectional design with prospective data collection, in which 25 patients with PDM and 20 healthy controls (HCs) were recruited. The patients with PDM underwent fMRI scans both during the PDM during the pain phase (PDM-P) and nonpain phase (PDM-NP). The long-term effects of PDM on the brain was assessed by comparing PDM-NP findings with those of HCs, and the central mechanism of PDM was assessed by comparing the PDM-P findings with those of PDM-NP. To identify changes in brain function, the amplitude of low-frequency fluctuations and the regional homogeneity (ReHo) were measured. To assess changes in brain structure, voxel-based morphometry (VBM) was applied. The periaqueductal gray (PAG) was set as a region of for conducting seed-based whole-brain functional connectivity (FC) analysis. Subsequently, Pearson correlation analyses were employed to evaluate the associations between the abnormal brain region and the clinical information of the patients. Results: There were neither functional nor structural differences between patients in the PDM-NP and HCs. Compared with those in PDM-NP, those in PDM-P showed increased ReHo in the left dorsolateral prefrontal cortex (DLPFC) but decreased FC between PAG and right superior parietal gyrus, bilateral inferior parietal gyrus, right calcarine gyrus, left superior occipital gyrus, left precentral gyrus, right DLPFC, and left crus I of the cerebellar hemisphere. Conclusions: The results from this study suggest that the mechanism of central pain hypersensitivity of PDM may be related to the disorder of the FC between the PAG and descending pain modulation system, default mode network (DMN), and occipital lobe. These findings could help us better understand the pathophysiology of PDM from a neuroimaging perspective.

9.
Cytotherapy ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38625071

ABSTRACT

With investigators looking to expand engineered T cell therapies such as CAR-T to new tumor targets and patient populations, a variety of cell manufacturing platforms have been developed to scale manufacturing capacity using closed and/or automated systems. Such platforms are particularly useful for solid tumor targets, which typically require higher CAR-T cell doses. Although T cell phenotype and function are key attributes that often correlate with therapeutic efficacy, how manufacturing platforms influence the final CAR-T cell product is currently unknown. We compared 4 commonly used T cell manufacturing platforms (CliniMACS Prodigy, Xuri W25 rocking platform, G-Rex gas-permeable bioreactor, static bag culture) using identical media, stimulation, culture length, and donor starting material. Selected CD4+CD8+ cells were transduced with lentiviral vector incorporating a CAR targeting FGFR4, a promising target for pediatric sarcoma. We observed significant differences in overall expansion over the 14-day culture; bag cultures had the highest capacity for expansion while the Prodigy had the lowest (481-fold versus 84-fold, respectively). Strikingly, we also observed considerable differences in the phenotype of the final product, with the Prodigy significantly enriched for CCR7+CD45RA+ naïve/stem central memory (Tn/scm)-like cells at 46% compared to bag and G-Rex with 16% and 13%, respectively. Gene expression analysis also showed that Prodigy CAR-Ts are more naïve, less cytotoxic and less exhausted than bag, G-Rex, and Xuri CAR-Ts, and pointed to differences in cell metabolism that were confirmed via metabolic assays. We hypothesized that dissolved oxygen level, which decreased substantially during the final 3 days of the Prodigy culture, may contribute to the observed differences in T cell phenotype. By culturing bag and G-Rex cultures in 1% O2 from day 5 onward, we could generate >60% Tn/scm-like cells, with longer time in hypoxia correlating with a higher percentage of Tn/scm-like cells. Intriguingly, our results suggest that oxygenation is responsible, at least in part, for observed differences in T cell phenotype among bioreactors and suggest hypoxic culture as a potential strategy prevent T cell differentiation during expansion. Ultimately, our study demonstrates that selection of bioreactor system may have profound effects not only on the capacity for expansion, but also on the differentiation state of the resulting CAR-T cells.

10.
Adv Sci (Weinh) ; : e2400377, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561956

ABSTRACT

Ligand-protected heterometallic nanoclusters in contrast to homo-metal counterparts show more broad applications due to the synergistic effect of hetero-metals but their controllable syntheses remain a challenge. Among heterometallic nanoclusters, monovalent Ag-Cu compounds are rarely explored due to much difference of Ag(I) and Cu(I) such as atom radius, coordination habits, and redox potential. Encouraged by copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction, comproportionation reaction of Cu(II)X2 and Cu(0) in the presence of (PhC≡CAg)n complex and molybdate generated a core-shell peanut-shaped 66-nuclear Ag(I)-Cu(I) heterometallic nanocluster, [(Mo4O16)2@Cu12Ag54(PhC≡C)50] (referred to as Ag54Cu12). The structure and composition of Ag-Cu heterometallic nanocluster are fully characterized. X-ray single crystal diffraction reveals that Ag54Cu12 has a peanut-shaped silver(I)/copper(I) heterometallic nanocage protected by fifty phenylacetylene ligands in µ3-modes and encapsulated two mutually twisted tetramolybdates. Heterometallic nanocage contains a 54-Ag-atom outer ellipsoid silver cage decorated by 12 copper inside wall. Nanosized Ag54Cu12 is a n-type narrow-band-gap semiconductor with a good photocurrent response. Preliminary experiments demonstrates that Ag54Cu12 itself and activated carbon supported Ag54Cu12/C are effective catalysts for 1,3-dipole cycloaddition between alkynes and azides at ambient conditions. The work provides not only a new synthetic route toward Ag(I)-Cu(I) nanoclusters but also an important heterometallic intermediate in CuAAC catalytic reaction.

11.
Acta Pharmacol Sin ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609562

ABSTRACT

Signal transducer and activator of transcription 3 (STAT3) plays an important role in the occurrence and progression of tumors, leading to resistance and poor prognosis. Activation of STAT3 signaling is frequently detected in hepatocellular carcinoma (HCC), but potent and less toxic STAT3 inhibitors have not been discovered. Here, based on antisense technology, we designed a series of stabilized modified antisense oligonucleotides targeting STAT3 mRNA (STAT3 ASOs). Treatment with STAT3 ASOs decreased the STAT3 mRNA and protein levels in HCC cells. STAT3 ASOs significantly inhibited the proliferation, survival, migration, and invasion of cancer cells by specifically perturbing STAT3 signaling. Treatment with STAT3 ASOs decreased the tumor burden in an HCC xenograft model. Moreover, aberrant STAT3 signaling activation is one of multiple signaling pathways involved in sorafenib resistance in HCC. STAT3 ASOs effectively sensitized resistant HCC cell lines to sorafenib in vitro and improved the inhibitory potency of sorafenib in a resistant HCC xenograft model. The developed STAT3 ASOs enrich the tools capable of targeting STAT3 and modulating STAT3 activity, serve as a promising strategy for treating HCC and other STAT3-addicted tumors, and alleviate the acquired resistance to sorafenib in HCC patients. A series of novel STAT3 antisense oligonucleotide were designed and showed potent anti-cancer efficacy in hepatocellular carcinoma in vitro and in vivo by targeting STAT3 signaling. Moreover, the selected STAT3 ASOs enhance sorafenib sensitivity in resistant cell model and xenograft model.

12.
Biotechnol Bioeng ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38595326

ABSTRACT

Pathogenic bacterial membrane proteins (MPs) are a class of vaccine and antibiotic development targets with widespread clinical application. However, the inherent hydrophobicity of MPs poses a challenge to fold correctly in living cells. Herein, we present a comprehensive method to improve the soluble form of MP antigen by rationally designing multi-epitope chimeric antigen (ChA) and screening two classes of protein-assisting folding element. The study uses a homologous protein antigen as a functional scaffold to generate a ChA possessing four epitopes from transferrin-binding protein A of Glaesserella parasuis. Our engineered strain, which co-expresses P17 tagged-ChA and endogenous chaperones groEL-ES, yields a 0.346 g/L highly soluble ChA with the property of HPS-positive serum reaction. Moreover, the protein titer of ChA reaches 4.27 g/L with >90% soluble proportion in 5-L bioreactor, which is the highest titer reported so far. The results highlight a timely approach to design and improve the soluble expression of MP antigen in industrially viable applications.

13.
Int J Biol Macromol ; 269(Pt 1): 131813, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38685537

ABSTRACT

Microbial exopolysaccharides (EPS) have various physiological functions such as antioxidant, anti-tumor, cholesterol lowering, and immune regulation. However, improving traditional fermentation conditions to increase the production of EPS from Lactiplantibacillus plantarum (L. plantarum) is limited. In this study, we aimed to better improve EPS production and physiological functions of L. plantarum YM-4-3 strain by overexpressing and knocking out the priming glycosyltransferase genes cps 2E and cps 4E for the first time. As a result, the EPS production of the overexpression strain was 30.15 %, 26.84 % and 36.29 % higher than WT, respectively. The EPS production of the knockout strain was significantly lower than that of the WT. At the same time, transcriptome data showed that the gene expression levels of each experimental strain had changed. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways found that the glycolysis/gluconeogenesis pathway had the highest gene enrichment in the metabolic pathway. The monosaccharide components of the EPS of each experimental strain were different from those of the WT and the EPS of the experimental strain showed stronger activity against oxidation. In conclusion, this study contributes to the efficient production and application of L. plantarum EPS and helps to understand the mechanism of EPS regulation in L. plantarum.

14.
Dev Comp Immunol ; 156: 105166, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38521378

ABSTRACT

C-type lectin proteins (CTLs), a group of pattern recognition receptors (PRRs), play pivotal roles in immune responses. However, the signal transduction and regulation of CTLs in cephalochordates have yet to be explored. In this study, we examined the composition of CTLs in Branchiostoma japonicum, identifying a total of 272 CTLs. These CTLs underwent further analysis concerning domain arrangement, tandem and segmental duplication events. A multidomain C-type lectin gene, designated as BjCTL5, encompassing CLECT, KR, CUB, MAM, and SR domains, was the focal point of our investigation. BjCTL5 exhibits ubiquitous expression across all detected tissues and is responsive to stimulation by LPS, mannose, and poly (I:C). The recombinant protein of BjCTL5 can bind to Escherichia coli and Staphylococcus aureus, inducing their agglutination and inhibiting the proliferation of S. aureus. Yeast two-hybrid, CoIP, and confocal immunofluorescence experiments revealed the interaction between BjCTL5 and apoptosis-stimulating proteins of p53, BjASPP. Intriguingly, BjCTL5 was observed to induce the luciferase activity of the NF-κB promoter in HEK293T cells. These results suggested a potential interaction between BjCTL5 and BjASPP, implicating that they involve in the activation of the NF-κB signaling pathway, which provides an evolutionary viewpoint on NF-κB signaling pathway in primitive chordate.


Subject(s)
Lancelets , Lectins, C-Type , NF-kappa B , Signal Transduction , Staphylococcus aureus , Animals , NF-kappa B/metabolism , Lancelets/genetics , Lancelets/immunology , Lancelets/metabolism , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , Staphylococcus aureus/immunology , Staphylococcus aureus/physiology , Humans , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Protein Binding , HEK293 Cells , Receptors, Pattern Recognition/metabolism , Receptors, Pattern Recognition/genetics , Immunity, Innate
15.
Drug Des Devel Ther ; 18: 639-650, 2024.
Article in English | MEDLINE | ID: mdl-38476203

ABSTRACT

Background: Norepinephrine has fewer negative effects on heart rate (HR) and cardiac output (CO) for treating postspinal hypotension (PSH) compared with phenylephrine during cesarean section. However, it remains unclear whether fetuses from patients with severe pre-eclampsia could benefit from the superiority of CO. The objective of this study was to compare the safety and efficacy of intermittent intravenous boluses of phenylephrine and norepinephrine used in equipotent doses for treating postspinal hypotension in patients with severe pre-eclampsia during cesarean section. Methods: A total of 80 patients with severe pre-eclampsia who developed PSH predelivery during cesarean section were included. Eligible patients were randomized at a 1:1 ratio to receive either phenylephrine or norepinephrine for treating PSH. The primary outcome was umbilical arterial pH. Secondary outcomes included other umbilical cord blood gas values, Apgar scores at 1 and 5 min, changes in hemodynamic parameters including CO, mean arterial pressure (MAP), HR, stroke volume (SV), and systemic vascular resistance (SVR), the number of vasopressor boluses required, and the incidence of bradycardia, hypertension, nausea, vomiting, and dizziness. Results: No significant difference was observed in umbilical arterial pH between the phenylephrine and norepinephrine groups (7.303±0.38 vs 7.303±0.44, respectively; P=0.978). Compared with the phenylephrine group, the overall CO (P=0.009) and HR (P=0.015) were greater in the norepinephrine group. The median [IQR] total number of vasopressor boluses required was comparable between the two groups (2 [1 to 3] and 2 [1 to 3], respectively; P=0.942). No significant difference was found in Apgar scores or the incidence of maternal complications between groups. Conclusion: A 60 µg bolus of phenylephrine and a 4.5 µg bolus of norepinephrine showed similar neonatal outcomes assessed by umbilical arterial pH and were equally effective when treating PSH during cesarean section in patients with severe pre-eclampsia. Norepinephrine provided a higher maternal CO and a lower incidence of bradycardia.


Subject(s)
Anesthesia, Spinal , Cesarean Section , Hypotension , Pre-Eclampsia , Female , Humans , Infant, Newborn , Pregnancy , Anesthesia, Spinal/adverse effects , Bradycardia/chemically induced , Double-Blind Method , Hypotension/drug therapy , Norepinephrine , Phenylephrine , Pre-Eclampsia/drug therapy , Vasoconstrictor Agents
16.
Trials ; 25(1): 200, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509589

ABSTRACT

BACKGROUND: The neural cells in the brains of patients with Parkinson's disease (PWP) display aberrant synchronized oscillatory activity within the beta frequency range. Additionally, enhanced gamma oscillations may serve as a compensatory mechanism for motor inhibition mediated by beta activity and also reinstate plasticity in the primary motor cortex affected by Parkinson's disease. Transcranial alternating current stimulation (tACS) can synchronize endogenous oscillations with exogenous rhythms, thereby modulating cortical activity. The objective of this study is to investigate whether the addition of tACS to multidisciplinary intensive rehabilitation treatment (MIRT) can improve symptoms of PWP so as to enhance the quality of life in individuals with Parkinson's disease based on the central-peripheral-central theory. METHODS: The present study was a randomized, double-blind trial that enrolled 60 individuals with Parkinson's disease aged between 45 and 70 years, who had Hoehn-Yahr scale scores ranging from 1 to 3. Participants were randomly assigned in a 1:1 ratio to either the tACS + MIRT group or the sham-tACS + MIRT group. The trial consisted of a two-week double-blind treatment period followed by a 24-week follow-up period, resulting in a total duration of twenty-six weeks. The primary outcome measured the change in PDQ-39 scores from baseline (T0) to 4 weeks (T2), 12 weeks (T3), and 24 weeks (T4) after completion of the intervention. The secondary outcome assessed changes in MDS-UPDRS III scores at T0, the end of intervention (T1), T2, T3, and T4. Additional clinical assessments and mechanistic studies were conducted as tertiary outcomes. DISCUSSION: The objective of this study is to demonstrate that tACS can enhance overall functionality and improve quality of life in PWP, based on the framework of MIRT. Additionally, it seeks to establish a potential correlation between these therapeutic effects and neuroplasticity alterations in relevant brain regions. The efficacy of tACS will be assessed during the follow-up period in order to optimize neuroplasticity and enhance its potential impact on rehabilitation efficiency for PWP. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR2300071969. Registered on 30 May 2023.


Subject(s)
Parkinson Disease , Transcranial Direct Current Stimulation , Humans , Middle Aged , Aged , Parkinson Disease/diagnosis , Parkinson Disease/therapy , Parkinson Disease/complications , Transcranial Direct Current Stimulation/adverse effects , Transcranial Direct Current Stimulation/methods , Quality of Life , Exercise Therapy/methods , Double-Blind Method , Randomized Controlled Trials as Topic
17.
Materials (Basel) ; 17(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38541499

ABSTRACT

The use of biobased flame-retardant (FR) agents for reducing the flammability of polyester/cotton (T/C) blend fabrics is highly desirable. In this study, a novel and sustainable phosphorus/nitrogen-containing FR, namely, phytic acid-urea (PA-UR) salt, was synthesized. The PA-UR salt was further used to enhance the FR performance of T/C fabric through surface modification. We further explored the potential chemical structure of PA-UR and the surface morphology, thermal stability, heat release capacity, FR properties, and mode of action of the coated fabric. The coated fabric achieved self-extinguishing and exhibited an increased limiting oxygen index of 31.8%. Moreover, the coated T/C blend fabric demonstrated a significantly reduced heat release capacity, indicating a decreased fire hazard. Thermogravimetric analysis revealed the anticipated decomposition of the coated T/C blend fabric and a subsequent increase in thermal stability. The burned char residues also maintained their fiber shape structures, suggesting the presence of condensed FR actions in the PA-UR-coated T/C blend fabric.

18.
World J Hepatol ; 16(2): 279-285, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38495276

ABSTRACT

BACKGROUND: Hepatic cystic and alveolar echinococcosis coinfections, particularly with concurrent abscesses and sinus tract formation, are extremely rare. This article presents a case of a patient diagnosed with this unique presentation, discussing the typical imaging manifestations of both echinococcosis types and detailing the diagnosis and surgical treatment experience thereof. CASE SUMMARY: A 39-year-old Tibetan woman presented with concurrent hepatic cystic and alveolar echinococcosis, accompanied by abdominal wall abscesses and sinus tract formation. Initial conventional imaging examinations suggested only hepatic cystic echinococcosis, but intraoperative and postoperative pathological examination revealed the coinfection. Following radical resection of the lesions, the patient's condition improved, and she was discharged soon thereafter. Subsequent outpatient follow-ups confirmed no recurrence of the hydatid lesion and normal surgical wound healing. Though mixed hepatic cystic and alveolar echinococcosis with abdominal wall abscesses and sinus tract formations are rare, the general treatment approach remains consistent with that of simpler infections of alveolar echinococcosis. CONCLUSION: Lesions involving the abdominal wall and sinus tract formation, may require radical resection. Long-term prognosis includes albendazole and follow-up examinations.

19.
Cell Biol Int ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38436106

ABSTRACT

Mitochondrial dysfunction and myocardial remodeling have been reported to be the main underlying molecular mechanisms of doxorubicin-induced cardiotoxicity. SIRT6 is a nicotinamide adenine dinucleotide-dependent enzyme that plays a vital role in cardiac protection against various stresses. Moreover, previous studies have demonstrated that FSTL1 could alleviate doxorubicin-induced cardiotoxicity by inhibiting autophagy. The present study investigated the probable mechanisms of FSTL1 on doxorubicin-induced cardiotoxicity in vivo and in vitro. We confirmed that FSTL1 exerted a pivotal protective role on cardiac tissue in vivo and on doxorubicin-induced cell injury in vitro. Furthermore, FSTL1 can alleviate doxorubicin-induced mitochondrial dysfunction by inhibiting autophagy and apoptosis. Further studies demonstrated that FSTL1 can activate SIRT6 signaling by restoring the SIRT6 protein expression in doxorubicin-induced myocardial injury. SIRT6 activation elevated the protein expression of Nrf2 in doxorubicin-induced H9C2 injury. Treatment with the Nrf2 inhibitor ML385 partially antagonized the cardioprotective role of SIRT6 on doxorubicin-induced autophagy or apoptosis. These results suggested that the protective mechanism of FSTL1 on doxorubicin-induced cardiotoxicity may be related with the inhibition of autophagy and apoptosis, partly through the activation of SIRT6/Nrf2.

20.
Open Med (Wars) ; 19(1): 20240909, 2024.
Article in English | MEDLINE | ID: mdl-38463517

ABSTRACT

In the study of TAVR, 3-dimensional (3D) printed aortic root models and pulsatile simulators were used for simulation training and teaching before procedures. The study was carried out in the following three parts: (1) experts were selected and equally divided into the 3D-printed simulation group and the non-3D-printed simulation group to conduct four times of TAVR, respectively; (2) another 10 experts and 10 young proceduralists were selected to accomplish three times of TAVR simulations; (3) overall, all the doctors were organized to complete a specific questionnaire, to evaluate the training and teaching effect of 3D printed simulations. For the 3D-printed simulation group, six proceduralists had a less crossing-valve time (8.3 ± 2.1 min vs 11.8 ± 2.7 min, P < 0.001) and total operation time (102.7 ± 15.3 min vs 137.7 ± 15.4 min, P < 0.001). In addition, the results showed that the median crossing-valve time and the total time required were significantly reduced in both the expert group and the young proceduralist group (all P<0.001). The results of the questionnaire showed that 3D-printed simulation training could enhance the understanding of anatomical structure and improve technical skills. Overall, cardiovascular 3D printing may play an important role in assisting TAVR, which can shorten the operation time and reduce potential complications.

SELECTION OF CITATIONS
SEARCH DETAIL
...