Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Opt Lett ; 49(7): 1664-1667, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38560831

ABSTRACT

High-power all-solid-state continuous-wave (CW) single-frequency laser with high linear polarization is a significant source for quantum optics and precision measurement. In this Letter, a high-power linearly polarized CW single-frequency laser based on the single-crystal fiber (SCF) master-oscillator power amplifier (MOPA) is presented, in which a homemade 140 W low-noise CW single-frequency laser and a Nd:YAG SCF are firstly employed as the seed laser and the medium of the MOPA, respectively. The mode-matching between the pump laser propagated with waveguide form and the freely propagated seed laser is optimized by considering the influence of the degradations of the polarization and the beam quality. Finally, when the incident powers of the pump and seed lasers are 262.6 W and 126.3 W, respectively, the seed waist radius is optimized to 200 µm. In this case, the output power of the linearly polarized laser reaches up to 208 W, which is the highest output power, to the best of our knowledge. The presented results provide a good reference for implementing a high power and high degree of the polarization and good beam quality laser based on the SCF MOPA.

2.
Opt Lett ; 48(3): 676-679, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36723561

ABSTRACT

The high power all-solid-state continuous wave single-frequency laser is a significant source for science and application due to good beam quality and low noise. However, the output power of the laser is usually restricted by the harmful thermal lens effect of the solid gain medium. To address this issue, we develop a self-mode-matching compact all-solid-state laser with a symmetrical ring resonator in which four end-pumped Nd:YVO4 laser crystals are used for both laser gain media and mode-matching elements. With this ingenious design, the thermal lens effect of every laser crystal can be controlled and the dynamic of the designed laser including the stability range and the beam waist sizes at crystals can be manipulated only by adjusting the pump power used on each laser gain medium. Under an appropriate combination of pump powers on four crystals, self-mode-matching in a resonator is realized. A stable CW single-frequency at 1064 nm with 140-W power, 102-kHz linewidth, and low intensity noise is obtained. The presented design paves an effective way to further scale-up the output power of a compact laser by employing more pieces of gain media.

3.
Opt Express ; 31(1): 745-754, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36607007

ABSTRACT

All-solid-state continuous-wave (CW) single-frequency tunable Ti:sapphire (Ti:S) laser is an important source in quantum optics and atomic physics. However, intracavity etalon (IE) locking is easily influenced by the intensity noise of the pump source in the low frequency band. In order to address this issue, a differential detector with dual-photodiodes (PDs) is designed and employed in the experiment. Both PDs are used to detect the lights of the pump source and the built Ti:S laser, respectively. As a result, the influence of the intensity noise of the pump source on the stability of the IE locking is successfully eliminated and the IE is stably locked to the oscillating longitudinal-mode of the laser. On this basis, a stable CW single-frequency tunable Ti:S laser is realized. The presented method is beneficial to attain a stable single-frequency tunable laser with immunity to the intensity noise of the pump source.

4.
Micromachines (Basel) ; 13(7)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35888864

ABSTRACT

The performance improvement of an all-solid-state single-frequency continuous-wave (CW) laser with high output power is presented in this paper, which is implemented by employing a temperature control system based on machine learning to control the temperature of laser elements including gain crystal, laser diode and so on. Because the developed temperature controller based on machine learning combines the back propagation (BP) neural network algorithm with the proportion-integration-differentiation (PID) control algorithm, the parameters of the PID are adaptive with the variation of the environment. As a result, the control speeds and control abilities of the temperatures of the elements are dramatically enhanced. In this case, the output characteristic and the adaptability to the environment as well as the stability of the single-frequency CW laser are also improved greatly.

5.
Micromachines (Basel) ; 12(11)2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34832837

ABSTRACT

High-power all-solid-state single-frequency continuous-wave (CW) lasers have been applied in basic research such as atomic physics, precision measurement, radar and laser guidance, as well as defense and military fields owing to their intrinsic advantages of high beam quality, low noise, narrow linewidth, and high coherence. With the rapid developments of sciences and technologies, the traditional single-frequency lasers cannot meet the development needs of emerging science and technology such as quantum technology, quantum measurement and quantum optics. After long-term efforts and technical research, a novel theory and technology was proposed and developed for improving the whole performance of high-power all-solid-state single-frequency CW lasers, which was implemented by actively introducing a nonlinear optical loss and controlling the stimulated emission rate (SER) in the laser resonator. As a result, the output power, power and frequency stabilities, tuning range and intensity noise of the single-frequency lasers were effectively enhanced.

6.
Opt Express ; 29(2): 2679-2689, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33726459

ABSTRACT

Here, we present a compact Watt-level single-frequency continuous-wave (CW) self-tuning titanium:sapphire (Ti:S) laser, which is implemented using a three-plate Ti:S crystal as both a gain medium and frequency-tuning element. The thickness ratio of the three-plate Ti:S crystal is 1:2:4, of which the thinnest plate measured 1 mm. The optical axes lie on their own surfaces and parallel to each other. Based on the presented self-tuning crystal, a ring resonator is designed and built. The maximum wavelength tuning range of the single-frequency self-tuning Ti:S laser is 108.84 nm, as demonstrated experimentally by rotating the three-plate Ti:S crystal, indicating good agreement with theoretical prediction. To the best of our knowledge, this is the first study to report a single-frequency CW self-tuning Ti:S laser, which can provide a feasible approach for achieving a compact all-solid-state single-frequency CW-tunable Ti:S laser.

7.
Opt Express ; 29(5): 6714-6725, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33726186

ABSTRACT

In this study, the optimal condition of a multi-plate birefringent filter (BRF) used in a single-frequency continuous-wave (CW) tunable laser is theoretically and experimentally investigated. The dependence of the optimal condition on the diving angle of the BRF optical axis is first deduced. Based on the proposed optimal condition, the diving angle of the BRF optical axis is optimized to 29.1°. Subsequently, a novel off-axis multi-plate BRF with a thickness ratio of 1:2:5:9 and the thinnest plate of 0.5 mm is designed and utilized in a tunable titanium:sapphire (Ti:S) laser. As a result, the operating wavelength of the Ti:S laser is successfully tuned from 691.48 to 995.55 nm by rotating the BRF 18°. The obtained tuning slope efficiency and maximum tuning range are 16.9 nm/° and 304.07 nm, respectively. The experimental results agree well with the theoretical analysis results, which provide a feasible approach for designing BRFs to satisfy the requirements of other single-frequency CW wideband tunable lasers.

8.
Opt Lett ; 44(15): 3785-3788, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31368968

ABSTRACT

A continuously tunable high-power single-frequency 455 nm blue laser for high-state excitation transition 6S1/22↔7P3/22 of Cs atoms was presented in this Letter, which was implemented by an intracavity frequency-doubled Ti:sapphire laser with an LBO crystal. The highest output power of 1.0 W was attained under a pump power of 13.5 W with an optical conversion efficiency of 7.4%. The measured power stability in 3 h and beam quality were better than ±0.27% (peak-to-peak) and Mx2=1.58, My2=1.18, respectively. By continuously scanning the length of the resonator after locking the employed intracavity etalon to the oscillating longitudinal mode of the laser, the continuous tuning range of the 455 nm blue laser was up to 32 GHz and was mode hop free. Lastly, the whole saturation absorption spectrum of the higher state excitation transition 6S1/22(Fg=3)↔P3/22(Fe=2,3,4) and 6S1/22(Fg=4)↔7P3/22(Fe=3,4,5) of Cs133 was successfully observed in the experiment, which further verified the excellent performance of the 455 nm blue laser.

9.
Opt Express ; 25(18): 21379-21387, 2017 Sep 04.
Article in English | MEDLINE | ID: mdl-29041436

ABSTRACT

A self-injection locked continuous-wave (CW) single-frequency tunable Ti:sapphire laser is demonstrated in this paper. Unidirectional operation of the presented Ti:sapphire laser is achieved by using a retro-reflecting device which can retro-reflect a seed laser beam from one direction back into the counter-propagating field. On the basis, the influence of the transmission of output coupler on the unidirectional operation is investigated and it is found that stable unidirectional and single-frequency operation of the Ti:sapphire laser is achieved when the loss difference between both output directions is larger than a certain value, which is easy to be realized by choosing the transmission of output coupler. When the output coupler with transmission of 6.5% is utilized, the maximal 5 W CW single-frequency Ti:sapphire laser with stable unidirectional operation is obtained with the pump power of 18 W. The measured power stability and M2 are better than ±0.9% and 1.1, respectively. The maximal tuning range and continuous frequency-tuning ability are 120 nm and 40.75 GHz, respectively.

10.
Opt Express ; 25(4): 3545-3552, 2017 Feb 20.
Article in English | MEDLINE | ID: mdl-28241568

ABSTRACT

A method of evaluating the thermal focal length of nonlinear crystal via transmission spectrum of a swept cavity (TSSC) is presented. By recording the resonant point offset of the TSSC, the thermal focal length can be successfully measured. Furtherly, by distinguishing the absorption of ultraviolet (UV) laser and UV laser induced infrared absorption (ULIIRA), it is clear that the ULIIRA is the important factor which induces the thermal lens effect compared to the absorption of UV laser for MgO-doped periodically poled stoichiometric lithium tantalate (MgO:PPSLT) crystal and it becomes serious with the increase of the generated UV laser. The ULIIRA coefficient measurement and thermal focal length evalution of MgO:PPSLT crystal can supply an useful reference for researchers to generate high quality UV laser and squeezed or entangled state of optical field by using MgO:PPSLT crystal. The presented method can also be used to precisely evaluate the thermal focal length of other nonlinear crystals.

11.
Opt Lett ; 42(1): 143-146, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-28059199

ABSTRACT

We present a tunable single-frequency CW Ti:sapphire laser with intensity noise manipulation. The manipulation of the laser intensity noise is realized by varying the frequency of the modulation signal loaded on the electrodes of an intracavity electro-optic etalon. A lithium niobate (LiNbO3) crystal is used to act as the electro-optic etalon, and its electro-optic effect is utilized to modulate the intracavity laser intensity for locking itself to the oscillating wavelength of the laser to implement continuous frequency-tuning. When the electro-optic etalon is locked to the oscillating mode of the Ti:sapphire laser with arbitrarily selected modulation frequency, the maximal continuous frequency-tuning range can reach to 20 GHz, and the laser intensity noise is successfully manipulated simultaneously.

12.
Appl Opt ; 55(13): 3478-82, 2016 May 01.
Article in English | MEDLINE | ID: mdl-27140359

ABSTRACT

We present a novel and efficient scheme to enhance the stability of laser output via feedback control to a nonlinear loss deliberately introduced to the laser resonator. By means of the feedback control to the intracavity nonlinear loss of an all-solid-state continuous-wave single-frequency laser with high output power at 1064 nm, its intensity and frequency stabilities are significantly improved. A lithium triborate crystal is deliberately placed inside the laser resonator to be an element of the nonlinear loss, and the temperature of the crystal is feedback controlled by an electronic loop. The control signal is generated by distinguishing the deviation of the output power and used for manipulating the intracavity nonlinear loss to compensate the deviation of the laser power actively. With the feedback-control loop, the intensity and frequency fluctuations of the output laser at 1064 nm are reduced from ±0.59% and 21.82 MHz without the feedback to ±0.26% and 9.84 MHz, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL