Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.672
Filter
1.
World J Clin Cases ; 12(23): 5299-5303, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39156081

ABSTRACT

Clear cell sarcoma (CCS) is a rare melanocytic soft tissue sarcoma known for its propensity to metastasize to the lymph nodes and typically has an unfavorable prognosis. Currently, surgical resection is the primary treatment for localized CCS, while radiotherapy and chemotherapy are preferred for metastatic cases. The roles of adjuvant chemotherapy, radiotherapy, and lymph node dissection are controversial. Although immunotherapy has emerged as a promising avenue in CCS treatment research, there are no established clinical standards for postoperative follow-up. This editorial discusses a recent article by Liu et al, with a focus on current diagnostic modalities, treatment approaches, and the challenging prognosis associated with CCS. Our aim is to underscore the importance of long-term patient follow-up in CCS management.

2.
Opt Lett ; 49(15): 4162-4165, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090884

ABSTRACT

Based on the x-ray absorption edges of different elements, we simultaneously image and distinguish the composition of three differently shaped components of an object by using energy-resolved x-ray absorption ghost imaging (GI). The initial x-ray beam is spatially modulated by a series of Hadamard matrix masks, and the object is composed of three pieces of Mo, Ag, and Sn foil in the shape of a triangle, square, and circle, respectively. The transmitted x-ray intensity is measured by an energy-resolved single-pixel detector with a spectral resolution better than 0.8 keV. Through correlation of the transmission spectra with the corresponding Hadamard patterns, the spectral image of the sample is reconstructed, with a spatial resolution of 108 µm. Our experiment demonstrates a practical application of spectral ghost imaging, which has important potential for the noninvasive analysis of material composition and distribution in biology, medical science, and many other fields.

3.
Eur J Med Chem ; 277: 116712, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39106657

ABSTRACT

Quaternization of ruthenium complexes may be a promising strategy for the development of new antibiotics. In response to the increasing bacterial resistance, we integrated the quaternary amine structure into the design of ruthenium complexes and evaluated their antibacterial activity. All the ruthenium complexes showed good antibacterial activity against the tested Staphylococcus aureus (S. aureus). Ru-8 was the most effective antibacterial agent that displayed excellent antibacterial activity against S. aureus (MIC = 0.78-1.56 µg/mL). In vitro experiments showed that all nine ruthenium complexes had low hemolytic toxicity to rabbit erythrocytes. Notably, Ru-8 was found to disrupt bacterial cell membranes, alter their permeability, and induce ROS production in bacteria, all the above leading to the death of bacteria without inducing drug resistance. To further explore the antibacterial activity of Ru-8in vivo, we established a mouse skin wound infection model and a G. mellonella larvae infection model. Ru-8 exhibited significant antibacterial efficacy against S. aureus in vivo and low toxicity to mouse tissues. The Ru-8 showed low toxicity to Raw264.7 cells (mouse monocyte macrophage leukemia cells). This study indicates that the ruthenium complex ruthenium quaternary was a promising strategy for the development of new antibacterial agents.

4.
Int Immunopharmacol ; 140: 112740, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39116500

ABSTRACT

While Resolvin D1 (RvD1) shows promise in resolving inflammation in experimental autoimmune encephalomyelitis (EAE), its pro-resolving roles on dendritic cells (DCs) remain unknown, and the chemical instability of RvD1 poses significant challenges to its drug development. This study aims to investigate whether 4-(2'-methoxyphenyl)-1-[2'-[N-(2″-pyridinyl)-p-fluorobenzamido]ethyl]piperazine (p-MPPF), a novel chemically stable analogue of RvD1, can play a pro-resolving role in EAE, particularly on DCs, and if p-MPPF could serve as a potential substitute for RvD1. We showed that both RvD1 and p-MPPF mediated the resolution of inflammation in EAE, as evidenced by ameliorated EAE progression, attenuated pathological changes in the spinal cord, altered cytokine expression profile in serum, and reduced proportion of pro-inflammatory immune cells in the spleen. Utilizing DCs derived from both the spleen and bone marrow of EAE, our investigation showed that RvD1 and p-MPPF prevented DC maturation, decreased pro-inflammatory cytokine secretion, shifted DCs away from a pro-inflammatory phenotype, increased the phagocytosis capacity of DCs, and suppressed their ability to induce differentiation of CD4+ T cells into Th1 and Th17 subsets. For underlying intracellular mechanisms, we found that RvD1 and p-MPPF down-regulated the lactate dehydrogenase A signaling pathways. Comparisons between RvD1 and p-MPPF showed that they exerted overlapped pro-resolving effects to a large extent. This study demonstrates that both RvD1 and p-MPPF exert therapeutic effects on EAE by mediating inflammation resolution, which is closely associated with modulating DC immune function towards a tolerogenic phenotype. SPM mimetics may serve as a more promising therapeutic drug.

5.
Foods ; 13(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39123508

ABSTRACT

The aim of this study was to assess the advantages of an industry-scale microfluidizer system (ISMS) to prepare whole-grain highland barley pulp (WHBP) compared with colloid milling. Storage stability was evaluated by particle size, gravity separation stability, and rheological properties, as well as the microstructure observation by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLMS). The results showed that colloid milling failed to effectively homogenize the material, while ISMS sample surfaces were compact and smooth at higher pressures according to visual observation and SEM. The Turbiscan stability index of WHBP by ISMS was much lower as a result of colloid milling, demonstrating ISMS can improve WHBP stability. WHBP by colloid milling displayed a three-peak particle size distribution pattern, while a single-peak pattern was evident after ISMS treatment. A higher shear rate decreased the apparent viscosity, suggesting that WHBP was a shear-thinning fluid. According to CLMS, ISMS can successfully improve homogenization by disrupting the structures of oil bodies, proteins, and starches. The WHBP prepared by ISMS exhibited a higher ß-glucan level than that prepared by colloid milling, and showed a significant increase in ß-glucan level with ISMS pressure. These findings indicate that using ISMS to produce WHBP is viable for enhancing its storage stability and nutritional value.

6.
Int J Mol Sci ; 25(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39125595

ABSTRACT

Polycyclic polyprenylated acylphloroglucinols (PPAPs) comprise a large group of compounds of mostly plant origin. The best-known compound is hyperforin from St. John's wort with its antidepressant, antitumor and antimicrobial properties. The chemical synthesis of PPAP variants allows the generation of compounds with improved activity and compatibility. Here, we studied the antimicrobial activity of two synthetic PPAP-derivatives, the water-insoluble PPAP23 and the water-soluble sodium salt PPAP53. In vitro, both compounds exhibited good activity against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium. Both compounds had no adverse effects on Galleria mellonella wax moth larvae. However, they were unable to protect the larvae from infection with S. aureus because components of the larval coelom neutralized the antimicrobial activity; a similar effect was also seen with serum albumin. In silico docking studies with PPAP53 revealed that it binds to the F1 pocket of human serum albumin with a binding energy of -7.5 kcal/mol. In an infection model of septic arthritis, PPAP23 decreased the formation of abscesses and S. aureus load in kidneys; in a mouse skin abscess model, topical treatment with PPAP53 reduced S. aureus counts. Both PPAPs were active against anaerobic Gram-positive gut bacteria such as neurotransmitter-producing Clostridium, Enterococcus or Ruminococcus species. Based on these results, we foresee possible applications in the decolonization of pathogens.


Subject(s)
Ketones , Methicillin-Resistant Staphylococcus aureus , Spiro Compounds , Animals , Humans , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Enterococcus faecium/drug effects , Ketones/chemistry , Ketones/pharmacology , Larva/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Molecular Docking Simulation , Moths/drug effects , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Staphylococcal Infections/drug therapy
7.
ACS Nano ; 18(32): 21236-21245, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39086003

ABSTRACT

The detection of mid-infrared light, covering a variety of molecular vibrational spectra, is critical for both civil and military purposes. Recent studies have highlighted the potential of two-dimensional topological semimetals for mid-infrared detection due to their advantages, including van der Waals (vdW) stacking and gapless electronic structures. Among them, mid-infrared photodetectors based on type-II Dirac semimetals have been less studied. In this paper, we present a silicon waveguide integrated type-II Dirac semimetal platinum telluride (PtTe2) mid-infrared photodetector, and further improve detection performance by using PtTe2-graphene heterostructure. For the fabricated silicon waveguide-integrated PtTe2 photodetector, with an external bias voltage of -10 mV and an input optical power of 86 nW, the measured responsivity is 2.7 A/W at 2004 nm and a 3 dB bandwidth of 0.6 MHz is realized. For the fabricated silicon waveguide-integrated PtTe2-graphene photodetector, as the external bias voltage and input optical power are 0.5 V and 0.13 µW, a responsivity of 5.5 A/W at 2004 nm and a 3 dB bandwidth of 35 MHz are obtained. An external quantum efficiency of 119% can be achieved at an input optical power of 0.376 µW.

8.
Sci Rep ; 14(1): 18547, 2024 08 09.
Article in English | MEDLINE | ID: mdl-39122810

ABSTRACT

Observational studies have shown that non-alcoholic fatty liver disease (NAFLD) is strongly associated with metabolic dysfunction. However, there is a paucity of research on whether changes in indicators of serum metabolism contribute to the development of NAFLD. This study was conducted with 4084 participants who underwent healthy physical examinations at Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China, in 2022 and 2023. Baseline and follow-up measurements, including anthropometric data, abdominal ultrasound and blood samples were collected. The diagnosis of NAFLD was based on the 2010 Chinese Guidelines on Diagnosis and Treatment of NAFLD. Multiple logistic regression was utilized to analyze the odds ratios (ORs) for the 1-year risk of NAFLD in connection with both baseline metabolic indicators and changes in metabolic indicators observed over the course of 1 year. A total of 3425 study participants who were free of NAFLD at baseline, including 1146 men and 2279 women, were included in the final analysis. The mean age was 34.43 ± 7.20 years. Participants who developed NAFLD were older, male and had higher levels of body mass index (BMI), blood pressure, fasting blood glucose (FBG), triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), free triiodothyronine (fT3), uric acid (UA), alanine aminotransferase (ALT) and aspartate aminotransferase (AST); and lower levels of high-density lipoprotein cholesterol (HDL-C) and free thyroxine (fT4) (all P values < 0.05). The multivariable model showed that baseline BMI, diastolic blood pressure (DBP), TG, TC, HDL-C, LDL-C, UA, fT4, fT3, ALT and changes in TG, HDL-C, and UA were associated with the 1-year risk of developing NAFLD. The risk of NAFLD increased by 56% [OR 1.56, 95% Confidence Interval (CI) 1.32-1.87] and 40% (OR 1.40, 95% CI 1.19-1.64) for each standard deviation (SD) increase in altered TG values (1.01 mmol/L) and altered UA values (55 µmol/L) respectively. Conversely, for each SD (0.27 mmol/L) increase in HDL-C change, the 1-year risk of incident NAFLD was reduced by 50% (OR 0.50, 95% CI 0.40-0.62). The present study suggested that increases in TG and UA, and decreases in HDL-C, significantly increase the risk of developing NAFLD. Therefore, more attention should be paid to these factors in the management and prevention of NAFLD.


Subject(s)
Lipids , Non-alcoholic Fatty Liver Disease , Uric Acid , Humans , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/epidemiology , Male , Female , Uric Acid/blood , Adult , China/epidemiology , Lipids/blood , Middle Aged , Risk Factors , Incidence , Body Mass Index
9.
Article in English | MEDLINE | ID: mdl-39120498

ABSTRACT

Luminescent CuI complexes are an important class of coordination compounds due to their relative abundance, low cost and ability to display excellent luminescence. The title Cu2I2P2S2-type binuclear complex, di-µ-iodido-bis[(thiourea-κS)(triphenylphosphine-κP)copper(I)], [Cu2I2(CH4N2S)2(C18H15P)2], conventionally abbreviated as Cu2I2TPP2TU2, where TPP and TU represent triphenylphosphine and thiourea, respectively, is described. In this complex, each CuI atom adopts a CuI2PS four-coordination mode and pairs of atoms are connected to each other by two µ2-I ligands to form a centrosymmetric binuclear cluster. It was also found that the paper-based film of this complex exhibited obvious luminescence light-up sensing for pyridine and 4-methylpyridine.

10.
Mediators Inflamm ; 2024: 7275309, 2024.
Article in English | MEDLINE | ID: mdl-39118979

ABSTRACT

Inflammatory bowel disease (IBD), which encompasses Crohn's disease (CD) and ulcerative colitis (UC), is a complicated illness whose exact cause is yet unknown. Necroptosis is associated with IBD pathogenesis, leading to intestinal barrier abnormalities and uncontrolled inflammation. Molecules involved in necroptosis, however, exhibit different expression levels in IBD and its associated colorectal cancer. Multiple studies have shown that inhibiting these molecules alleviates necroptosis-induced IBD. Moreover, due to the severe scarcity of clinical medications for treating IBD caused by necroptosis, we review the various functions of crucial necroptosis molecules in IBD, the stimuli regulating necroptosis, and the current emerging therapeutic strategies for treating IBD-associated necroptosis. Eventually, understanding the pathogenesis of necroptosis in IBD will enable the development of additional therapeutic approaches for the illness.


Subject(s)
Inflammatory Bowel Diseases , Necroptosis , Humans , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Animals , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Crohn Disease/metabolism , Crohn Disease/pathology
11.
Plant Phenomics ; 6: 0193, 2024.
Article in English | MEDLINE | ID: mdl-39144674

ABSTRACT

Cucumber is an important vegetable crop that has high nutritional and economic value and is thus favored by consumers worldwide. Exploring an accurate and fast technique for measuring the morphological traits of cucumber fruit could be helpful for improving its breeding efficiency and further refining the development models for pepo fruits. At present, several sets of measurement schemes and standards have been proposed and applied for the characterization of cucumber fruits; however, these manual methods are time-consuming and inefficient. Therefore, in this paper, we propose a cucumber fruit morphological trait identification framework and software called CucumberAI, which combines image processing techniques with deep learning models to efficiently identify up to 51 cucumber features, including 32 newly defined parameters. The proposed tool introduces an algorithm for performing cucumber contour extraction and fruit segmentation based on image processing techniques. The identification framework comprises 6 deep learning models that combine fruit feature recognition rules with MobileNetV2 to construct a decision tree for fruit shape recognition. Additionally, the framework employs U-Net segmentation models for fruit stripe and endocarp segmentation, a MobileNetV2 model for carpel classification, a ResNet50 model for stripe classification and a YOLOv5 model for tumor identification. The relationships between the image-based manual and algorithmic traits are highly correlated, and validation tests were conducted to perform correlation analyses of fruit surface smoothness and roughness, and a fruit appearance cluster analysis was also performed. In brief, CucumberAI offers an efficient approach for extracting and analyzing cucumber phenotypes and provides valuable information for future cucumber genetic improvements.

12.
Heliyon ; 10(15): e34337, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39144986

ABSTRACT

The global epidemic caused by SARS-CoV-2 has brought about worldwide burden and a sense of danger for more than two years, leading to a wide range of social, public health, economic and environmental issues. Self-inoculation through hands has been the primary way for environmental transmission of SARS-CoV-2. Plasma-activated water (PAW) has been reported as an effective, safe and environmentally friendly disinfectant against SARS-CoV-2. However, the inactivating effect of PAW on SARS-CoV-2 located on skin surface and its underlying mechanism of action have not been elucidated. In this study, PAW was prepared using an air-pressure plasma jet device. The antiviral efficiency of PAW1, PAW3, and PAW5 on the SARS-CoV-2 pseudovirus was 8.20 % (±2.88 %), 46.24 % (±1.79 %), and 91.71 % (±0.47 %), respectively. Additionally, determination of PAW's physicochemical properties, identification of major sterile effector in PAW, transmission electron microscopy analysis, malondialdehyde (MDA) assessment, SDS-PAGE, ELISA, and qPCR were conducted to reveal the virucidal mechanism of PAW. Our experimental results suggested that peroxynitrite, which was generated by the synergism of acidic environment and reactive species, was the major sterile effector of PAW. Furthermore, we found that PAW treatment significantly inactivated SARS-CoV-2 pseudovirus through the destruction of its structure of and the degradation of the viral RNA. Therefore, the possible mechanism for the structural destruction of SARS-COV-2 by PAW is through the action of peroxynitrite generated by the synergism of acidic environment and reactive species, which might react with and destroy the lipid envelope of SARS-CoV-2 pseudovirus. Nevertheless, further studies are required to shed light on the interaction mechanism of PAW-inherent RONS and viral components, and to confirm the determinant factors for virus inactivation of SARS-COV-2 by PAW. Therefore, PAW may be a candidate hand disinfectant used to disrupt the transmission of SARS-CoV-2.

13.
Front Microbiol ; 15: 1405751, 2024.
Article in English | MEDLINE | ID: mdl-39132141

ABSTRACT

Introduction: Citrus is one of the most important fruit crops worldwide, and the root-associated microbiota can have a profound impact on tree health and growth. Methods: In a collaborative effort, the International Citrus Microbiome Consortium investigated the global citrus root microbiota with samples collected from nine citrus-producing countries across six continents. We analyzed 16S rDNA and ITS2 amplicon sequencing data to identify predominant prokaryotic and fungal taxa in citrus root samples. Comparative analyses were conducted between root-associated microbial communities and those from the corresponding rhizosphere and bulk soil samples. Additionally, genotype-based group-wise comparisons were performed to assess the impact of citrus genotype on root microbiota composition. Results: Ten predominant prokaryotic phyla, containing nine bacterial phyla including Proteobacteria, Actinobacteria, Acidobacteria, and Bacteroidetes and one archaeal phylum (Thaumarchaeota), and multiple fungal phyla including Ascomycota and Basidiomycota were identified in the citrus root samples. Compared with the microbial communities from the corresponding rhizosphere and bulk soil samples from the same trees, the prokaryotic and fungal communities in the roots exhibited lower diversity and complexity but greater modularity compared to those in the rhizosphere. In total, 30 root-enriched and 150 root-depleted genera in bacterial community were identified, whereas 21 fungal genera were enriched, and 147 fungal genera were depleted in the root niche compared with the rhizosphere. The citrus genotype significantly affected the root prokaryotic and fungal communities. In addition, we have identified the core root prokaryotic genera comprising Acidibacter, Allorhizobium, Bradyrhizobium, Chitinophaga, Cupriavidus, Devosia, Dongia, Niastella, Pseudomonas, Sphingobium, Steroidobacter and Streptomyces, and the core fungal genera including Acrocalymma, Cladosporium, Fusarium, Gibberella, Mortierella, Neocosmospora and Volutella. The potential functions of these core genera of root microbiota were predicted. Conclusion: Overall, this study provides new insights into the assembly of microbial communities and identifies core members of citrus root microbiota across a wide geographic range. The findings offer valuable information for manipulating root microbiota to enhance plant growth and health.

14.
Environ Sci Pollut Res Int ; 31(31): 44415-44430, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38954338

ABSTRACT

Chemical oxidation coupled with microbial remediation has attracted widespread attention for the removal of polycyclic aromatic hydrocarbons (PAHs). Among them, the precise evaluation of the feasible oxidant concentration of PAH-contaminated soil is the key to achieving the goal of soil functional ecological remediation. In this study, phenanthrene (PHE) was used as the target pollutant, and Fe2+-activated persulphate (PS) was used to remediate four types of soils. Linear regression analysis identified the following important factors influencing remediation: PS dosage and soil PHE content for PHE degradation, Fe2+ dosage, hydrolysable nitrogen (HN), and available phosphorus for PS decomposition. A comprehensive model of "soil characteristics-oxidation conditions-remediation effect" with a high predictive accuracy was constructed. Based on model identification, Pseudomonas aeruginosa GZ7, which had high PAHs degrading ability after domestication, was further applied to coupling repair remediation. The results showed that the optimal PS dose was 0.75% (w/w). The response relationship between soil physical, chemical, and biological indicators at the intermediate interface and oxidation conditions was analysed. Coupled remediation effects were clarified using microbial diversity sequencing. The introduction of Pseudomonas aeruginosa GZ7 stimulated the relative abundance of Cohnella, Enterobacter, Paenibacillus, and Bacillus, which can promote material metabolism and energy transformation during remediation.


Subject(s)
Oxidation-Reduction , Phenanthrenes , Pseudomonas aeruginosa , Soil Pollutants , Soil , Phenanthrenes/metabolism , Soil/chemistry , Soil Microbiology , Environmental Restoration and Remediation/methods , Biodegradation, Environmental , Polycyclic Aromatic Hydrocarbons , Sulfates/chemistry
15.
Mol Divers ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030284

ABSTRACT

Fluorescent drugs and pyrimidine-indole scaffolds have been shown to have advantages in cancer treatment. Fluorescent antitumor drugs BF3-o, m, p-phenylenediamine pyrimidine-indole derivatives (PYB1, PYB2, and PYB3) were synthesized by linking pyrimidine and indole groups with aniline through a simple step and introducing BF3. The drugs exhibit promising antitumor activity and their fluorescent properties make them useful for imaging purposes. The optical properties of the three compounds have been investigated. All of them have fluorescent properties and compound PYB2 has good fluorescent properties. Additionally, the in vitro cytotoxicity of these compounds was evaluated against the human cancer cell line HeLa and the human normal cell line L02. The inhibition rates of HeLa cells treated with PYB1, PYB2, and PYB3 at a concentration of 19.2 µg/mL were 80.91%, 77.72%, and 65.94%, respectively. These results indicate a strong inhibitory effect on cancer cells. Further through the cell imaging experiment, we can see that PYB2 can enter the cell through the cell membrane through the fluorescence scattering diagram, which has good biocompatibility. In addition, the possible interactions between the compounds and Ras protein active sites were analyzed by molecular docking. The three compounds can bind well to Ras protein through hydrogen bonding. This study provides a basis for the development and modification of pyrimidine-indole fluorescent anticancer drugs. Compound PYB2 shows potential as a fluorescent anticancer drug.

16.
Int J Mol Sci ; 25(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39000566

ABSTRACT

Staphylococcal toxic shock syndrome (STSS) is a rare, yet potentially fatal disease caused by Staphylococcus aureus (S. aureus) enterotoxins, known as superantigens, which trigger an intense immune response. Our previous study demonstrated the protective effect of tofacitinib against murine toxin-induced shock and a beneficial effect against S. aureus sepsis. In the current study, we examined the effects of tofacitinib on T-cell response in peripheral blood using a mouse model of enterotoxin-induced shock. Our data revealed that tofacitinib suppresses the activation of both CD4+ and CD8+ T cells in peripheral blood. Furthermore, both gene and protein levels of Th1 cytokines were downregulated by tofacitinib treatment in mice with enterotoxin-induced shock. Importantly, we demonstrated that CD4+ cells, but not CD8+ cells, are pathogenic in mice with enterotoxin-induced shock. In conclusion, our findings suggest that tofacitinib treatment suppresses CD4+ T-cell activation and Th1 response, thereby aiding in protection against staphylococcal toxic shock in mice. This insight may guide the future development of novel therapies for STSS.


Subject(s)
CD4-Positive T-Lymphocytes , Lymphocyte Activation , Piperidines , Pyrimidines , Shock, Septic , Staphylococcal Infections , Th1 Cells , Animals , Piperidines/pharmacology , Piperidines/therapeutic use , Th1 Cells/immunology , Th1 Cells/drug effects , Th1 Cells/metabolism , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Shock, Septic/drug therapy , Shock, Septic/immunology , Shock, Septic/chemically induced , Mice , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , Lymphocyte Activation/drug effects , Staphylococcal Infections/drug therapy , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Enterotoxins , Staphylococcus aureus/drug effects , Cytokines/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Mice, Inbred C57BL , Female , Disease Models, Animal , Superantigens/immunology
17.
Org Lett ; 26(31): 6681-6686, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39058573

ABSTRACT

Here, we demonstrate palladium-catalyzed Hiyama-type cross-coupling reactions of aryl thianthrenium or phenoxathiinium salts. By employing stable and inexpensive organosilanes, the arylation, alkenylation, and alkynylation were realized in high efficiency using commercially available Pd(tBu3P)2 as the catalyst, thus providing a reliable method for preparation of biaryls, styrenes, and aryl acetylenes with a broad functional group tolerance under mild conditions. Given the accessibility of aryl thianthrenium or phenoxathiinium salts from simple arenes in a remarkable regioselective fashion, this protocol also provides an attractive approach for the late-stage modification of complex bioactive scaffolds.

18.
World J Clin Cases ; 12(21): 4691-4702, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39070844

ABSTRACT

BACKGROUND: Numerous studies have assessed the efficacy and safety of fecal microbiota transplantation (FMT) as a therapy for ulcerative colitis (UC). However, the treatment processes and outcomes of these studies vary. AIM: To evaluate the efficacy and safety of FMT for treating UC by conducting a systematic meta-analysis. METHODS: The inclusion criteria involved reports of adult patients with UC treated with FMT, while studies that did not report clinical outcomes or that included patients with infection were excluded. Clinical remission (CR) and endoscopic remission (ER) were the primary and secondary outcomes, respectively. RESULTS: We included nine studies retrieved from five electronic databases. The FMT group had better CR than the control group [relative risk (RR) = 1.53; 95% confidence interval (CI): 1.19-1.94; P < 0.0008]. ER was statistically significantly different between the two groups (RR = 2.80; 95%CI: 1.93-4.05; P < 0.00001). Adverse events did not differ significantly between the two groups. CONCLUSION: FMT demonstrates favorable performance and safety; however, well-designed randomized clinical trials are still needed before the widespread use of FMT can be recommended. Furthermore, standardizing the FMT process is urgently needed for improved safety and efficacy.

19.
World J Clin Oncol ; 15(7): 799-805, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39071460

ABSTRACT

Colorectal cancer (CRC) has high incidence and mortality rates, and the emergence and application of CRC screening have helped us effectively control the occurrence and development of CRC. Currently, common international screening methods include tests based on feces and blood, and examination methods that allow for visualization, such as sigmoidoscopy and colonoscopy. Some methods have been widely used, whereas others such as multi-target stool RNA test are still being explored and developed, and are expected to become front-line screening methods for CRC in the future. The choice of screening method is affected by external conditions and the patients' situation, and the clinician must choose an appropriate strategy according to the actual situation and the patient's wishes. This article introduces various CRC screening methods and analyzes the factors relevant to the screening strategy.

20.
Front Chem ; 12: 1402640, 2024.
Article in English | MEDLINE | ID: mdl-39036658

ABSTRACT

The water-soluble nido-carborane was prepared by alkali treatment of o-carborane. A polymer PInd containing a polyindole structure was synthesized and employed to label the modified o-carborane. Subsequently, four polymeric nanomaterials were synthesized with the objective of encapsulating them in order to enhance its bioavailability. The experimental results showed that the fluorescent complex encapsulated by the pH-sensitive polymer A had the best UV absorption and fluorescence intensity, and thus A-PInd-C was chosen for subsequent experiments. The Transmission electron microscopy images revealed that the compounds exhibited a rounded internal morphology, with the layers exhibiting a tightly stacked arrangement. The AFM imaging revealed that the surface of the sample exhibited a relatively uniform and smooth appearance. In vitro release experiments conducted under acidic conditions demonstrated that A-PInd-C was released in a predominantly linear manner, with a maximum release rate of 80% observed within 48 h. Cellular imaging experiments showed that the compound could enter HeLa and HCT-116 cells and was mainly distributed around the nucleus, especially in the acidic environment. The results of the cell proliferation toxicity experiments demonstrated that A-PInd-C exhibited inhibitory effects on HeLa, PC-3 and L02 cells. Among these, the inhibitory effect on PC-3 cells was the most pronounced, reaching up to 70%. In conclusion, this paper solves the problem of poor bioavailability of carborane by improving the boron containing compounds and also makes the system have potential for Boron neutron capture therapy.

SELECTION OF CITATIONS
SEARCH DETAIL