Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 324
Filter
1.
Per Med ; 21(4): 227-241, 2024.
Article in English | MEDLINE | ID: mdl-38940394

ABSTRACT

High altitude pulmonary edema (HAPE) is a life-threatening form of non-cardiogenic pulmonary edema. In recent years, association studies have become the main method for identifying HAPE genetic loci. A genome-wide association study (GWAS) of HAPE risk-associated loci was performed in Chinese male Han individuals (164 HAPE cases and 189 healthy controls) by the Precision Medicine Diversity Array Chip with 2,771,835 loci (Applied Biosystems Axiom™). Eight overlapping candidate loci in CCNG2, RP11-445O3.2, NUPL1 and WWOX were finally selected. In silico functional analyses displayed the PPI network, functional enrichment and signal pathways related to CCNG2, NUPL1, WWOX and NRXN1. This study provides data supplements for HAPE susceptibility gene loci and new insights into HAPE susceptibility.


Subject(s)
Altitude Sickness , Asian People , Genetic Predisposition to Disease , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Humans , Male , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Asian People/genetics , China , Altitude Sickness/genetics , Polymorphism, Single Nucleotide/genetics , Hypertension, Pulmonary/genetics , Case-Control Studies , Genetic Loci/genetics , Adult , East Asian People
2.
Biochem Genet ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850376

ABSTRACT

Genetic polymorphisms of very important pharmacogenes (VIP) are a significant factor contributing to inter-individual variability in drug therapy. The purpose of this study was to identify significantly different loci in the Yi population and to enrich their pharmacogenomic information. 54 VIP variants were selected from the Pharmacogenomics Knowledge Base (PharmGKB) and genotyped in 200 Yi individuals. Then, we compared their genotype distribution between the Yi population and the other 26 populations using the χ2 test. Compared with the other 26 populations, the genotype frequencies of 4 single nucleotide polymorphisms (SNPs), rs2108622 (CYP4F2), rs1065852 (CYP2D6), rs2070676 (CYP2E1), and rs4291 (ACE), had significant differences in the Yi population. For example, the TT genotype frequency of rs2108622 (8.1%) was higher than that of African populations, and the AA genotype frequency of rs1065852 (27.3%) was higher than that of other populations except East Asians. We also found that the Yi populations differed the least from East Asians and the most from Africans. Furthermore, the differences in these variants might be related to the effectiveness and toxicity risk of using warfarin, iloperidone, cisplatin cyclophosphamide, and other drugs in the Yi population. Our data complement the pharmacogenomic information of the Yi population and provide theoretical guidance for their personalized treatment.

3.
Neuromolecular Med ; 26(1): 27, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935278

ABSTRACT

Glioma is the most common primary intracranial tumor with high mortality and poor prognosis. The purpose of this study was to investigate how single-nucleotide polymorphisms (SNPs) of the NID2 gene affect glioma risk and prognosis. Four candidate SNPs of NID2 in 529 glioma patients and 478 healthy controls were successfully genotyped by Agena MassARRAY mass spectrometer. Logistic regression was utilized to assess the associations between NID2 SNPs and glioma risk under different genetic models. Furthermore, the relationship between risk-related SNPs in NID2 and the prognosis of glioma patients was explored through Kaplan-Meier (KM) survival curve and Cox proportional hazard regression analysis. The results showed that rs11846847 (OR 1.24, p = 0.017) and rs1874569 (OR 1.22, p = 0.026) were significantly associated with an increased risk of glioma, and rs11846847 also had a risk-increasing effect on glioma in participants ≤ 40 years old. The interaction model of rs11846847 and rs1874569 could be more suitable for forecasting glioma risk. We also discovered a significant association between rs1874569 and poor prognosis in glioma patients (HR 1.32, p = 0.039) and especially CC genotype was relevant to shorter overall survival (OS) and progression-free survival (PFS) in patients with high-grade glioma. Additionally, the study demonstrated that gross total resection or chemotherapy improve glioma prognosis in the Chinese Han population. This study is the first to provide evidence for the association of NID2 SNPs with glioma risk and prognosis, suggesting that NID2 variants might be potential factors for glioma.


Subject(s)
Asian People , Brain Neoplasms , Calcium-Binding Proteins , Genetic Predisposition to Disease , Glioma , Polymorphism, Single Nucleotide , Humans , Glioma/genetics , Glioma/mortality , Female , Male , Brain Neoplasms/genetics , Prognosis , Adult , Middle Aged , Asian People/genetics , Calcium-Binding Proteins/genetics , China/epidemiology , Case-Control Studies , Kaplan-Meier Estimate , Genotype , Proportional Hazards Models , Risk Factors , East Asian People , Cell Adhesion Molecules
4.
Gene ; 927: 148617, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38795855

ABSTRACT

PURPOSE: This study aimed to investigate the association between single nucleotide polymorphisms (SNPs) in DPF3 and susceptibility to pulmonary tuberculosis (PTB) in the Northwest Chinese Han population. METHODS: Genotyping of four DPF3 SNPs (rs10140566, rs75575287, rs202075571, and rs61986330) was performed using Agena MassARRAY from 488 PTB patients and 488 healthy controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using logistic regression. Multifactor dimensionality reduction (MDR) analysis was employed to investigate the effect of SNP-SNP interactions on PTB risk. The GSE54992 dataset was analyzed using R software to ascertain DPF3 expression levels. RESULTS: Overall analysis revealed that rs202075571 (allele: OR = 1.31, p = 0.015; CC vs. TT: OR = 1.97, p = 0.049; dominant: OR = 1.33, p = 0.032) and rs61986330 (allele: OR = 1.38, p = 0.010; CA vs. CC: OR = 1.35, p = 0.044; dominant: OR = 1.40, p = 0.019) were associated with an increased PTB risk. Stratified analysis showed that rs10140566 was a PTB risk factor in females, those aged ≤40 and non-smokers, and rs202075571 was associated with PTB risk in individuals aged >40 and smokers, and rs61986330 was associated with PTB risk in males, those aged >40 and smokers. The four SNPs model demonstrated significant predictive potential for PTB risk. Furthermore, DPF3 exhibited higher expression in PTB compared to healthy controls. CONCLUSION: DPF3 polymorphisms (rs10140566, rs202075571, and rs61986330) are associated with an increased risk of PTB, providing valuable new insights into the mechanism of PTB.

5.
Expert Rev Mol Diagn ; 24(5): 459-466, 2024 May.
Article in English | MEDLINE | ID: mdl-38756100

ABSTRACT

BACKGROUND: Breast cancer (BC) is the leading cause of cancer death among women worldwide. The nudix hydrolase 17 (NUDT17) may play notable roles in cancer growth and metastasis. In this study, we explored the importance of NUDT17 gene polymorphism in patients with BC. METHODS: In our study, 563 BC patients and 552 healthy controls participated. We used logistic regression analysis to calculate odds ratios (OR) and 95% confidence intervals (CI), and multifactor dimension reduction (MDR) analysis of SNP-SNP interactions. Finally, UALCAN and THPA databases were used for bioinformatics analysis. RESULTS: The rs9286836 G allele was associated with a decreased the BC risk (p = 0.022), and the carriers of rs2004659 G allele had a 32% decreased risk of BC than individuals with allele A (p = 0.004). In the four genetic models, rs9286836 and rs2004659 reduced the risk of BC. Additionally, we found that the NUDT17 SNPs were associated with BC risk under age, tumor size, and clinical stage stratification. The MDR analysis showed that the five-locus interaction model was the best in the multi-locus model. CONCLUSION: Our study found that NUDT17 single nucleotide polymorphisms are associated with BC susceptibility in Chinese Han population.


Subject(s)
Breast Neoplasms , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Pyrophosphatases , Humans , Breast Neoplasms/genetics , Female , Middle Aged , Pyrophosphatases/genetics , Alleles , Adult , Case-Control Studies , Genotype , Odds Ratio , Genetic Association Studies , Aged , Risk Factors
6.
Front Public Health ; 12: 1355659, 2024.
Article in English | MEDLINE | ID: mdl-38807991

ABSTRACT

Background: The Tibetan population residing in high-altitude (HA) regions has adapted to extreme hypoxic environments. However, there is limited understanding of the genetic basis of body compositions in Tibetan population adapted to HA. Methods: We performed a genome-wide association study (GWAS) to identify genetic variants associated with HA and HA-related body composition traits. A total of 755,731 single nucleotide polymorphisms (SNPs) were genotyped using the precision medicine diversity array from 996 Tibetan college students. T-tests and Pearson correlation analysis were used to estimate the association between body compositions and altitude. The mixed linear regression identified the SNPs significantly associated with HA and HA-related body compositions. LASSO regression was used to screen for important SNPs in HA and body compositions. Results: Significant differences were observed in lean body mass (LBW), muscle mass (MM), total body water (TBW), standard weight (SBW), basal metabolic rate (BMR), total protein (TP), and total inorganic salt (Is) in different altitudes stratification. We identified three SNPs in EPAS1 (rs1562453, rs7589621 and rs7583392) that were significantly associated with HA (p < 5 × 10-7). GWAS analysis of 7 HA-related body composition traits, we identified 14 SNPs for LBM, 11 SNPs for TBW, 15 SNPs for MM, 16 SNPs for SBW, 9 SNPs for BMR, 12 SNPs for TP, and 26 SNPs for Is (p < 5.0 × 10-5). Conclusion: These findings provide insight into the genetic basis of body composition in Tibetan college students adapted to HA, and lay the foundation for further investigation into the molecular mechanisms underlying HA adaptation.


Subject(s)
Altitude , Body Composition , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Humans , Tibet , Polymorphism, Single Nucleotide/genetics , Male , Female , Body Composition/genetics , Young Adult , Adult , Adaptation, Physiological/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Genotype , East Asian People
7.
Biochem Genet ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642176

ABSTRACT

In this cohort of 217 bladder cancer patients and 484 healthy controls, we explored the association between CYP24A1 variants (rs2762934, rs1570669, rs6068816, rs2296241) and bladder cancer risk in the Chinese Han population. Utilizing the Agena MassARRAY system, we genotyped four selected CYP24A1 polymorphisms. Logistic regression revealed a significant association of rs2762934 and rs1570669 with elevated bladder cancer risk, while rs6068816 exhibited a protective effect. Bioinformatics analysis of CYP24A1 expression in normal and cancerous bladder tissues indicated higher expression in normal tissue. In conclusion, our findings highlight the potential role of CYP24A1 variants in bladder cancer susceptibility.

8.
Open Med (Wars) ; 19(1): 20240895, 2024.
Article in English | MEDLINE | ID: mdl-38584840

ABSTRACT

Backgrounds: Glioma is a highly malignant brain tumor with a grim prognosis. Genetic factors play a role in glioma development. While some susceptibility loci associated with glioma have been identified, the risk loci associated with prognosis have received less attention. This study aims to identify risk loci associated with glioma prognosis and establish a prognostic prediction model for glioma patients in the Chinese Han population. Methods: A genome-wide association study (GWAS) was conducted to identify risk loci in 484 adult patients with glioma. Cox regression analysis was performed to assess the association between GWAS-risk loci and overall survival as well as progression-free survival in glioma. The prognostic model was constructed using LASSO Cox regression analysis and multivariate Cox regression analysis. The nomogram model was constructed based on the single nucleotide polymorphism (SNP) classifier and clinical indicators, enabling the prediction of survival rates at 1-year, 2-year, and 3-year intervals. Additionally, the receiver operator characteristic (ROC) curve was employed to evaluate the prediction value of the nomogram. Finally, functional enrichment and tumor-infiltrating immune analyses were conducted to examine the biological functions of the associated genes. Results: Our study found suggestive evidence that a total of 57 SNPs were correlated with glioma prognosis (p < 5 × 10-5). Subsequently, we identified 25 SNPs with the most significant impact on glioma prognosis and developed a prognostic model based on these SNPs. The 25 SNP-based classifier and clinical factors (including age, gender, surgery, and chemotherapy) were identified as independent prognostic risk factors. Subsequently, we constructed a prognostic nomogram based on independent prognostic factors to predict individualized survival. ROC analyses further showed that the prediction accuracy of the nomogram (AUC = 0.956) comprising the 25 SNP-based classifier and clinical factors was significantly superior to that of each individual variable. Conclusion: We identified a SNP classifier and clinical indicators that can predict the prognosis of glioma patients and established a prognostic prediction model in the Chinese Han population. This study offers valuable insights for clinical practice, enabling improved evaluation of patients' prognosis and informing treatment options.

9.
Eur J Clin Invest ; 54(8): e14202, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38553975

ABSTRACT

BACKGROUND: High-altitude pulmonary oedema (HAPE) is a form of noncardiogenic pulmonary oedema. Studies have found that long noncoding RNA (lncRNA) plays an important role in HAPE. ANRIL is significant in pulmonary illnesses, which implies that alterations in ANRIL expression levels may be involved in the beginning and development of HAPE. However, the specific mechanism is indistinct. The present study is meant to explore the effect and mechanism of ANRIL on hypoxic-induced injury of pulmonary microvascular endothelial cells (PMEVCs). METHODS: In the hypoxic model of PMVECs, overexpression of ANRIL or knockdown of miR-181c-5p was performed to assess cell proliferation, apoptosis, and migration. Furthermore, the levels of apoptosis-related proteins, inflammatory factors, and vascular active factors were also measured. RESULTS: The results showed that, after 24 h of hypoxia, PMVECs proliferation and migration were suppressed in comparison to the control group, along with an increase in apoptosis, a decrease in the expression of ANRIL, and an increase in the expression of miR-181c-5p (all p < .05). The damage caused by hypoxia in PMVECs can be lessened by overexpressing ANRIL, which also inhibits the production of TNF-α, iNOS, and VEGF as well as BAX and cleaved caspase-3 (all p < .05). Further experimental results showed that overexpression of ANRIL and knockdown of miR-181c-5p had the same protection against hypoxic injury in PMVECs (all p < .05). CONCLUSIONS: Our study suggests that ANRIL may prevent hypoxia injury to PMVECs in HAPE through the negative regulation of miR-181c-5p.


Subject(s)
Apoptosis , Cell Movement , Cell Proliferation , Endothelial Cells , Lung , MicroRNAs , RNA, Long Noncoding , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/genetics , Endothelial Cells/metabolism , Cell Proliferation/genetics , MicroRNAs/metabolism , MicroRNAs/genetics , Cell Movement/genetics , Animals , Lung/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Cell Hypoxia/physiology , Rats , Gene Knockdown Techniques , Tumor Necrosis Factor-alpha/metabolism , Cells, Cultured , Caspase 3/metabolism , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics
10.
Pharmacogenomics J ; 24(2): 8, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38485921

ABSTRACT

BACKGROUND: Tibetan medicine Gaoyuan'an capsule (GYAC) is widely used to prevent pulmonary edema at high altitude, but the specific mechanism has not been explored. In this study, we analyzed the mechanism of GYAC in hypoxia tolerance, and provided a new idea for the prevention and treatment of altitude disease. METHODS: The effective components and corresponding targets of GYAC were screened out by the Chinese herbal medicine network database, and the key targets of hypoxia tolerance were retrieved by Genecards, OMIM and PubMed database. Cytoscape 3.7.2 was used to construct GYAC ingredient-target-hypoxia tolerance-related target network. GO function annotation and KEGG enrichment analysis were performed to predict the pathways in which target genes may be involved, and molecular docking was used to verify the binding ability of the compound to target genes. In vitro, the above results were further verified by molecular experiment. RESULTS: We found that GYAC can improve hypoxia tolerance by regulating various target genes, including IL6, IFNG, etc. The main regulatory pathways were HIF-1 signaling pathway. Molecular docking showed that the affinity between luteolin and target genes (IL6, IFNG) were better. In vitro, we observed that hypoxia can inhibit cell viability and promote apoptosis of H9C2 cell. And hypoxia can promote the expression of LDH. After the addition of luteolin, the decrease of cell viability, the increase of cell apoptosis, LDH release and the decrease of mitochondrial membrane potential were inhibited. Besides, inflammatory related factors (IL-6, IL-10, IL-2, IFNG and VEGFA) expression were also inhibited hypoxic cell models. CONCLUSIONS: The results of network pharmacology and molecular docking showed that luteolin, a monomeric component of GYAC, played a role in hypoxia tolerance through a variety of target genes, such as IL6, IFNG. What's more, we have discovered that luteolin can reduce the inflammatory response in cardiac myocytes, thereby alleviating mitochondrial damage, and ultimately enhancing the hypoxia tolerance of H9C2 cardiomyocytes.


Subject(s)
Drugs, Chinese Herbal , Interleukin-6 , Humans , Molecular Docking Simulation , Luteolin , Network Pharmacology , Hypoxia/drug therapy , Hypoxia/genetics , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
11.
Sci Rep ; 14(1): 7495, 2024 03 29.
Article in English | MEDLINE | ID: mdl-38553524

ABSTRACT

The gradual evolution of pharmacogenomics has shed light on the genetic basis for inter-individual drug response variations across diverse populations. This study aimed to identify pharmacogenomic variants that differ in Zhuang population compared with other populations and investigate their potential clinical relevance in gene-drug and genotypic-phenotypic associations. A total of 48 variants from 24 genes were genotyped in 200 Zhuang subjects using the Agena MassARRAY platform. The allele frequencies and genotype distribution data of 26 populations were obtained from the 1000 Genomes Project, followed by a comparison and statistical analysis. After Bonferroni correction, significant differences in genotype frequencies were observed of CYP3A5 (rs776746), ACE (rs4291), KCNH2 (rs1805123), and CYP2D6 (rs1065852) between the Zhuang population and the other 26 populations. It was also found that the Chinese Dai in Xishuangbanna, China, Han Chinese in Beijing, China, and Southern Han Chinese, China showed least deviation from the Zhuang population. The Esan in Nigeria, Gambian in Western Division, The Gambia, and Yoruba in Ibadan, Nigeria exhibited the largest differences. This was also proved by structural analysis, Fst analysis and phylogenetic tree. Furthermore, these differential variants may be associated with the pharmacological efficacy and toxicity of Captopril, Amlodipine, Lisinopril, metoclopramide, and alpha-hydroxymetoprolol in the Zhuang population. Our study has filled the gap of pharmacogenomic information in the Zhuang population and has provided a theoretical framework for the secure administration of drugs in the Zhuang population.


Subject(s)
Clinical Relevance , Pharmacogenomic Variants , Humans , Phylogeny , Polymorphism, Single Nucleotide , China , Nigeria , Gene Frequency , Genotype
12.
Cancer Chemother Pharmacol ; 93(5): 481-496, 2024 May.
Article in English | MEDLINE | ID: mdl-38300251

ABSTRACT

BACKGROUND: Pharmacogenomics is a facet of personalized medicine that explores how genetic variants affect drug metabolism and adverse drug reactions. Therefore, this study aims to detect distinct pharmacogenomic variations among the Jingpo population and explore their clinical correlation with drug metabolism and toxicity. METHODS: Agena MassARRAY Assay was used to genotype 57 VIP variants in 28 genes from 159 unrelated Jingpo participants. Subsequently, the chi-squared test and Bonferroni's statistical tests were utilized to conduct a comparative analysis of genotypes and allele frequencies between the Jingpo population and the other 26 populations from the 1000 Genome Project. RESULTS: We discovered that the KHV (Kinh in Ho ChiMinh City, Vietnam), CHS (Southern Han Chi-nese, China) and JPT (Japanese in Tokyo, Japan) exhibited the smallest differences from the Jingpo with only 4 variants, while ESN (Esan in Nigeria) exhibited the largest differences with 30 variants. Besides, a total of six considerably different loci (rs4291 in ACE, rs20417 in PTGS2, rs1801280 and rs1799929 in NAT2, rs2115819 in ALOX5, rs1065852 in CYP2D6, p < 3.37 × 10-5) were identified in this study. According to PharmGKB, rs20417 (PTGS2), rs4291 (ACE), rs2115819 (ALOX5) and rs1065852 (CYP2D6) were found to be associated with the metabolism efficiency of non-steroidal anti-inflammatory drugs (NSAIDs), aspirin, montelukast and tamoxifen, respectively. Meanwhile, rs1801280 and rs1799929 (NAT2) were found to be related to drug poisoning with slow acetylation. CONCLUSION: Our study unveils distinct pharmacogenomic variants in the Jingpo population and discovers their association with the metabolic efficiency of NSAIDs, montelukast, and tamoxifen.


Subject(s)
East Asian People , Gene Frequency , Adult , Female , Humans , Male , Middle Aged , Acetates , China , Clinical Relevance , Cyclopropanes , East Asian People/genetics , Genotype , Pharmacogenetics , Pharmacogenomic Variants , Polymorphism, Single Nucleotide , Quinolines , Sulfides
13.
Expert Rev Mol Diagn ; 24(4): 333-339, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38263767

ABSTRACT

OBJECTIVES: This study aimed to detect the correlation between SOWAHB polymorphisms and Thyroid cancer (TC) risk in the Chinese Han population. METHODS: We genotyped SOWAHB variants in 510 TC patients and 509 controls using Agena MassARRAY. We assessed the association between SOWAHB polymorphisms and TC susceptibility, with the significant results evaluated through FPRP analysis. We predicted TC risk by the SNP-SNP interaction, analyzed by MDR. RESULTS: Carriers with rs2703129 CC had a lower probability of TC (codominant, recessive: p = 0.002), while subjects with rs1874564 AG had an increased risk of developing TC (codominant, recessive: p = 0.000, log-additive: p = 0.028). In subjects aged > 45 years, rs2703129 may reduce TC predisposition (codominant: p = 0.011, recessive: p = 0.007), but there was an increased association between rs1874564 and TC risk (codominant: p = 0.030, dominant: p = 0.047). Also, rs2703129 was associated with a lower risk of TC among males (codominant: p = 0.018, recessive: p = 0.013). Conversely, rs1874564 was associated with an increased risk of TC in females (codominant: p = 0.001, dominant: p = 0.003). CONCLUSION: SOWAHB SNPs were related to the occurrence of TC, and rs2703129 may be a protective site for TC.

14.
J Surg Res ; 296: 18-28, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38215673

ABSTRACT

INTRODUCTION: Ventricular septal defect (VSD) is the most common congenital heart malformation in children. This study aimed to investigate potential pathogenic genes associated with Tibetan familial VSD. METHODS: Whole genomic DNA was extracted from eight Tibetan children with VSD and their healthy parents (a total of 16 individuals). Whole-exome sequencing was performed using the Illumina HiSeq platform. After filtration, detection, and annotation, single nucleotide variations and insertion-deletion markers were examined. Comparative evaluations using the Sorting Intolerant from Tolerant, PolyPhen V2, Mutation Taster, and Combined Annotation Dependent Depletion databases were conducted to predict harmful mutant genes associated with the etiology of Tibetan familial VSD. RESULTS: A total of six missense mutations in genetic disease-causing genes associated with the development of Tibetan familial VSD were identified: activin A receptor type II-like 1 (c.652 C > T: p.R218 W), ATPase cation transporting 13A2 (c.1363 C > T: p.R455 W), endoplasmic reticulum aminopeptidase 1 (c.481 G > A: p.G161 R), MRI1 (c.629 G > A: p.R210Q), tumor necrosis factor receptor-associated protein 1 (c.224 G > A: p.R75H), and FBN2 (c.2260 G > A: p.G754S). The Human Gene Mutation Database confirmed activin A receptor type II-like 1, MRI1, and tumor necrosis factor receptor-associated protein 1 as pathogenic mutations, while FBN2 was classified as a probable pathogenic mutation. CONCLUSIONS: This novel study directly screens genetic variations associated with Tibetan familial VSD using whole-exome sequencing, providing new insights into the pathogenesis of VSD.


Subject(s)
Heart Defects, Congenital , Heart Septal Defects, Ventricular , Child , Humans , Exome Sequencing , Tibet , Heart Septal Defects, Ventricular/genetics , Heart Septal Defects, Ventricular/metabolism , Receptors, Tumor Necrosis Factor/genetics
15.
Oncology ; 102(2): 168-182, 2024.
Article in English | MEDLINE | ID: mdl-37699361

ABSTRACT

INTRODUCTION: SMG5 is involved in tumor cell development and viewed as a potential target for immunotherapy. The purpose of this study was to systematically analyze the expression level, function, and prognostic value of SMG5 in pan-cancers. METHODS: Differential expression of SMG5 in normal and tumor tissues was analyzed using The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression Database (GTEx) data. Survival analysis was performed by Kaplan-Meier method and Cox risk regression. The relationship between SMG5 expression and lymphocyte abundance, tumor cell immune infiltration level, molecular and immune subtypes as well as immune checkpoints was analyzed by tumor-immune system interactions database (TISIDB), Tumor Immune Estimation Resource (TIMER), and Sangerbox databases. The correlation between SMG5 and immune scores was studied using the Estimation of Stromal and Immune Cells in Malignant Tumours using Expression (ESTIMATE) data algorithm. Further, drug sensitivity analysis of SMG5 with low-grade glioma (LGG) was conducted using the CellMiner database. RESULTS: SMG5 was highly expressed in 23 tumors and only had a significant impact on the prognosis of patients with LGG only. In addition, in tumor microenvironment and tumor immune analysis, we found that the level of immune infiltration, tumor mutational load, microsatellite instability, and immune checkpoints of LGG were significantly correlated with SMG5 expression. Furthermore, SMG5 was significantly associated with immune scores, stromal scores, and sensitivity of some drugs in LGG. CONCLUSION: SMG5 is differentially expressed in several cancers and is significantly associated with prognosis, immune microenvironment, and immune checkpoints in LGG patients. Therefore, SMG5 could be a potential pan-cancer biomarker and an immunotherapeutic target for LGG.


Subject(s)
Glioma , Humans , Prognosis , Biomarkers, Tumor/genetics , Algorithms , Cell Differentiation , Tumor Microenvironment , Carrier Proteins
16.
Eur J Clin Invest ; 54(4): e14144, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38059696

ABSTRACT

BACKGROUND: Stroke is an important cause of death and disability worldwide, ranking second in the cause of death, and it is thought to be related to genetic factors. The purpose of our study is to investigate the association between CASZ1, WNT2B and PTPRG single nucleotide polymorphisms (SNPs) and stroke risk in the Chinese population. METHODS: We recruited 1418 volunteers, comprised of 710 stroke cases and 708 controls in this study. We used MassARRAY iPLEX GOLD method to genotype the three SNPs on CASZ1, WNT2B and PTPRG. Logistic regression was used to analyse the association between these SNPs and stroke, and odds ratios (ORs) and 95% confidence intervals (CIs) were then calculated. What's more, the interactions among SNPs were predicted by multi-factor dimensionality reduction (MDR) analysis. RESULTS: This research demonstrated that CASZ1 rs880315 and PTPRG rs704341 were associated with reduced stroke susceptibility. More precisely, CASZ1 rs880315 was associated with reduced stroke susceptibility in people aged ≤64 years and women. PTPRG rs704341 was associated with reduced stroke susceptibility in people aged >64 years, women, non-smokers and non-drinkers. Conversely, WNT2B rs12037987 was related to elevated stroke susceptibility in people aged >64 years, women and non-smokers. In addition, CASZ1 rs880315, WNT2B rs12037987 and PTPRG rs704341 had a strong redundancy relationship. CONCLUSION: Our study concludes that CASZ1 rs880315, WNT2B rs12037987 and PTPRG rs704341 are associated with stroke, and the study provides a basis for assessing genetic variants associated with stroke risk in the Han Chinese population.


Subject(s)
Genetic Predisposition to Disease , Stroke , Humans , Female , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide , Stroke/epidemiology , Stroke/genetics , Genotype , China/epidemiology , Case-Control Studies , Glycoproteins , Wnt Proteins/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 5/genetics , DNA-Binding Proteins/genetics , Transcription Factors/genetics
17.
Gene ; 896: 148042, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38042215

ABSTRACT

BACKGROUND: A genome-wide association study has recognized C6orf10-BTNL2 polymorphism in coronary artery disease. The goal of this study was to explore the potential correlation of nine missense TSBP1 variants with coronary heart disease (CHD) risk in the Chinese Han population. METHODS: Nine TSBP1 missense single nucleotide polymorphisms (SNPs) were selected for genotyping by the Agena MassARRAY platform. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to analyze the contribution of TSBP1 SNPs to CHD predisposition by logistic regression models adjusted by age, sex, drinking, and smoking. The correlation of TSBP1 variants with clinical data in CHD patients was examined by Kruskal-Wallis test. RESULTS: rs9268368-C (p = 0.039, OR = 1.18, 95 % CI: 1.01-1.38) was related to an increased risk of CHD, while rs3749966-C (p = 0.032, OR = 0.49, 95 % CI: 0.25-0.96) and rs3129941-A (p = 0.011, OR = 0.74, 95 % CI: 0.59-0.93) might be protective factors against CHD occurrence in the Chinese Han population. We also observed the effects of demographic characteristics (age, sex, alcohol consumption, and smoking) and complications (hypertension and diabetes) on the interactive association of TSBP1 polymorphisms with CHD susceptibility. rs139993810 was related to the levels of high-density lipoprotein cholesterol (HDL-C, p = 0.030). CONCLUSIONS: Our findings determined the association of TSBP1 rs9268368, rs3749966, and rs3129941 with CHD occurrence in the Chinese Han population, and highlighted the influence of demographic characteristics and complications on the interactive association of TSBP1 polymorphisms with CHD risk.


Subject(s)
Coronary Artery Disease , Hypertension , Humans , Genetic Predisposition to Disease , Genome-Wide Association Study , Risk Factors , Coronary Artery Disease/genetics , Polymorphism, Single Nucleotide , Case-Control Studies , Butyrophilins
18.
Int J Mol Sci ; 24(21)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37958803

ABSTRACT

The aim of this study was to discover new biomarkers to detect breast cancer (BC), which is an aggressive cancer with a high mortality rate. In this study, bioinformatic analyses (differential analysis, weighted gene co-expression network analysis, and machine learning) were performed to identify potential candidate genes for BC to study their molecular mechanisms. Furthermore, Quantitative Real-time PCR and immunohistochemistry assays were used to examine the protein and mRNA expression levels of a particular candidate gene (DLGAP5). And the effects of DLGAP5 on cell proliferation, migration, invasion, and cell cycle were further assessed using the Cell Counting Kit-8 assay, colony formation, Transwell, wound healing, and flow cytometry assays. Moreover, the changes in the JAK2/STAT3 signaling-pathway-related proteins were detected by Western Blot. A total of 44 overlapping genes were obtained by differential analysis and weighted gene co-expression network analysis, of which 25 genes were found in the most tightly connected cluster. Finally, NEK2, CKS2, UHRF1, DLGAP5, and FAM83D were considered as potential biomarkers of BC. Moreover, DLGAP5 was highly expressed in BC. The down-regulation of DLGAP5 may inhibit the proliferation, migration, invasion, and cell cycle of BC cells, and the opposite was true for DLGAP5 overexpression. Correspondingly, silencing or overexpression of the DLGAP5 gene inhibited or activated the JAK2/STAT3 signaling pathway, respectively. DLGAP5, as a potential biomarker of BC, may impact the cell proliferation, migration, invasion, cell cycle, and BC development by modulating the JAK2/STAT3 signaling pathway.


Subject(s)
Breast Neoplasms , CDC2-CDC28 Kinases , Humans , Female , Cell Line, Tumor , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Movement/genetics , Signal Transduction , Cell Cycle/genetics , Cell Proliferation/genetics , Biomarkers , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Gene Expression Regulation, Neoplastic , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Neoplasm Proteins/metabolism , Cell Cycle Proteins/metabolism , CDC2-CDC28 Kinases/genetics
19.
Pharmgenomics Pers Med ; 16: 707-715, 2023.
Article in English | MEDLINE | ID: mdl-37426899

ABSTRACT

Background: Glioma is the main pathological subtype of brain tumors with high mortality. Objective: This study aimed to elucidate the correlation between TREM1 variants and glioma risk in the Chinese Han population. Methods: Genotyping of six variants of TREM1 was completed by Agena MassARRAY platform in 1061 subjects (503 controls and 558 glioma patients). The relationship between TREM1 polymorphisms and glioma risk was calculated using the logistic regression model, with odds ratio (OR) and 95% confidence intervals (CIs). A multifactor dimensionality reduction (MDR) method was performed to assess SNP-SNP interactions to predict glioma risk. Results: In this research, overall analysis illustrated an association between TREM1 rs9369269 and an increased risk of glioma. Rs9369269 was also related to the risk of glioma in patients aged ≤40 years and females. Subjects with rs9369269 AC genotype were likely to obtain glioma compared to people with CC genotype (patients with astroglioma vs healthy people). Compared to TT genotype carriers, carriers with AT genotype of rs1351835 were significantly associated with overall survival (OS). Conclusion: Taken together, the study identified the association between TREM1 variants and glioma risk and TREM1 variants were significantly associated with the prognosis of glioma. In the future, larger samples are needed to verify the results.

20.
Per Med ; 20(3): 239-249, 2023 05.
Article in English | MEDLINE | ID: mdl-37427690

ABSTRACT

Aim: Interindividual and interethnic differences in drug efficacy drive the development and progress of pharmacogenomics and precision medicine. This study was performed to enrich the pharmacogenomic information for the Lisu population from China. Methods: 54 very important pharmacogene variants were selected from PharmGKB and genotyped in 199 Lisu individuals. The genotype distribution data of 26 populations were downloaded from the 1000 Genomes Project and analyzed with the χ2 test. Results: Among the 26 populations in the 1000 Genomes Project, African Caribbeans in Barbados; Esan in Nigeria; Gambian in Western Divisions, The Gambia; Luhya in Webuye, Kenya; Yoruba in Ibadan; Finnish in Finland; Toscani in Italy and Sri Lankan Tamil in the UK were the top eight nationalities with the most significant differences in genotype distribution from the Lisu population. The loci of CYP3A5 rs776746, KCNH2 rs1805123, ACE rs4291, SLC19A1 rs1051298 and CYP2D6 rs1065852 were significantly different in the Lisu. Conclusion: The results showed that there were substantial differences in SNPs of very important pharmacogene variants, which can provide a theoretical basis for individualized drug use for the Lisu.


Subject(s)
East Asian People , Pharmacogenomic Testing , Polymorphism, Single Nucleotide , Humans , East Asian People/genetics , Gene Frequency/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...