Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
Add more filters










Publication year range
1.
Carbohydr Polym ; 337: 122156, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710572

ABSTRACT

Seaweeds represent a rich source of sulfated polysaccharides with similarity to heparan sulfate, a facilitator of myriad virus host cell attachment. For this reason, attention has been drawn to their antiviral activity, including the potential for anti-SARS-CoV-2 activity. We have identified and structurally characterized several fucoidan extracts, including those from different species of brown macroalga, and a rhamnan sulfate from a green macroalga species. A high molecular weight fucoidan extracted from Saccharina japonica (FSjRPI-27), and a rhamnan sulfate extracted from Monostroma nitidum (RSMn), showed potent competitive inhibition of spike glycoprotein receptor binding to a heparin-coated SPR chip. This inhibition was also observed in cell-based assays using hACE2 HEK-293 T cells infected by pseudotyped SARS-CoV-2 virus with IC50 values <1 µg/mL. Effectiveness was demonstrated in vivo using hACE2-transgenic mice. Intranasal administration of FSjRPI-27 showed protection when dosed 6 h prior to and at infection, and then every 2 days post-infection, with 100 % survival and no toxicity at 104 plaque-forming units per mouse vs. buffer control. At 5-fold higher virus dose, FSjRPI-27 reduced mortality and yielded reduced viral titers in bronchioalveolar fluid and lung homogenates vs. buffer control. These findings suggest the potential application of seaweed-based sulfated polysaccharides as promising anti-SARS-CoV-2 prophylactics.


Subject(s)
Antiviral Agents , COVID-19 , Mannans , Polysaccharides , SARS-CoV-2 , Seaweed , Polysaccharides/chemistry , Polysaccharides/pharmacology , Animals , Humans , SARS-CoV-2/drug effects , Seaweed/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , HEK293 Cells , Mice , COVID-19/prevention & control , COVID-19/virology , COVID-19 Drug Treatment , Mice, Transgenic , Spike Glycoprotein, Coronavirus/metabolism , Deoxy Sugars/pharmacology , Deoxy Sugars/chemistry , Angiotensin-Converting Enzyme 2/metabolism
2.
Glycoconj J ; 41(2): 163-174, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38642280

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide COVID-19 pandemic, leading to 6.8 million deaths. Numerous variants have emerged since its outbreak, resulting in its significantly enhanced ability to spread among humans. As with many other viruses, SARS­CoV­2 utilizes heparan sulfate (HS) glycosaminoglycan (GAG) on the surface of host cells to facilitate viral attachment and initiate cellular entry through the ACE2 receptor. Therefore, interfering with virion-HS interactions represents a promising target to develop broad-spectrum antiviral therapeutics. Sulfated glycans derived from marine organisms have been proven to be exceptional reservoirs of naturally existing HS mimetics, which exhibit remarkable therapeutic properties encompassing antiviral/microbial, antitumor, anticoagulant, and anti-inflammatory activities. In the current study, the interactions between the receptor-binding domain (RBD) of S-protein of SARS-CoV-2 (both WT and XBB.1.5 variants) and heparin were applied to assess the inhibitory activity of 10 marine-sourced glycans including three sulfated fucans, three fucosylated chondroitin sulfates and two fucoidans derived from sea cucumbers, sea urchin and seaweed Saccharina japonica, respectively. The inhibitory activity of these marine derived sulfated glycans on the interactions between RBD of S-protein and heparin was evaluated using Surface Plasmon Resonance (SPR). The RBDs of S-proteins from both Omicrion XBB.1.5 and wild-type (WT) were found to bind to heparin, which is a highly sulfated form of HS. All the tested marine-sourced sulfated glycans exhibited strong inhibition of WT and XBB.1.5 S-protein binding to heparin. We believe the study on the molecular interactions between S-proteins and host cell glycosaminoglycans provides valuable insight for the development of marine-sourced, glycan-based inhibitors as potential anti-SARS-CoV-2 agents.


Subject(s)
Heparin , Polysaccharides , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Heparin/pharmacology , Heparin/chemistry , Heparin/metabolism , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/metabolism , Humans , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , COVID-19/virology , COVID-19/metabolism , Protein Binding , Animals , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Heparitin Sulfate/metabolism , Heparitin Sulfate/chemistry
3.
Virol Sin ; 39(2): 290-300, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38331038

ABSTRACT

Coxsackievirus B3 (CVB3) is the pathogen causing hand, foot and mouth disease (HFMD), which manifests across a spectrum of clinical severity from mild to severe. However, CVB3-infected mouse models mainly demonstrate viral myocarditis and pancreatitis, failing to replicate human HFMD symptoms. Although several enteroviruses have been evaluated in Syrian hamsters and rhesus monkeys, there is no comprehensive data on CVB3. In this study, we have first tested the susceptibility of Syrian hamsters to CVB3 infection via different routes. The results showed that Syrian hamsters were successfully infected with CVB3 by intraperitoneal injection or nasal drip, leading to nasopharyngeal colonization, acute severe pathological injury, and typical HFMD symptoms. Notably, the nasal drip group exhibited a longer viral excretion cycle and more severe pathological damage. In the subsequent study, rhesus monkeys infected with CVB3 through nasal drips also presented signs of HFMD symptoms, viral excretion, serum antibody conversion, viral nucleic acids and antigens, and the specific organ damages, particularly in the heart. Surprisingly, there were no significant differences in myocardial enzyme levels, and the clinical symptoms resembled those often associated with common, mild infections. In summary, the study successfully developed severe Syrian hamsters and mild rhesus monkey models for CVB3-induced HFMD. These models could serve as a basis for understanding the disease pathogenesis, conducting pre-trial prevention and evaluation, and implementing post-exposure intervention.


Subject(s)
Disease Models, Animal , Enterovirus B, Human , Hand, Foot and Mouth Disease , Macaca mulatta , Mesocricetus , Animals , Hand, Foot and Mouth Disease/virology , Hand, Foot and Mouth Disease/pathology , Enterovirus B, Human/pathogenicity , Antibodies, Viral/blood , Cricetinae , Female , Virus Shedding , Nasopharynx/virology , Male
4.
Viruses ; 16(2)2024 02 02.
Article in English | MEDLINE | ID: mdl-38400013

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic virus with high contagion and mortality rates. Heparan sulfate proteoglycans (HSPGs) are ubiquitously expressed on the surface of mammalian cells. Owing to its high negatively charged property, heparan sulfate (HS) on the surface of host cells is used by many viruses as cofactor to facilitate viral attachment and initiate cellular entry. Therefore, inhibition of the interaction between viruses and HS could be a promising target to inhibit viral infection. In the current study, the interaction between the receptor-binding domain (RBD) of MERS-CoV and heparin was exploited to assess the inhibitory activity of various sulfated glycans such as glycosaminoglycans, marine-sourced glycans (sulfated fucans, fucosylated chondroitin sulfates, fucoidans, and rhamnan sulfate), pentosan polysulfate, and mucopolysaccharide using Surface Plasmon Resonance. We believe this study provides valuable insights for the development of sulfated glycan-based inhibitors as potential antiviral agents.


Subject(s)
Heparin , Middle East Respiratory Syndrome Coronavirus , Animals , Heparin/pharmacology , Middle East Respiratory Syndrome Coronavirus/metabolism , Sulfates/chemistry , Glycosaminoglycans/metabolism , Heparitin Sulfate/metabolism , Mammals
5.
ACS Omega ; 9(3): 3931-3941, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38284003

ABSTRACT

Two-dimensional organic-inorganic hybrid perovskites (OIHPs) have excellent photoelectric properties, such as high charge mobility and a high optical absorption coefficient, which have attracted enormous attention in the field of optoelectronic devices and photochemistry. However, the stability of 2D OIHPs in solution is deficient. In particular, the lack of stability in polar solutions hinders their application in photochemistry. In this work, (iso-BA)2PbI4 was used as a model to explore the three possibilities of the stable existence of a 2D perovskite in aqueous solution. And two of these systems that stabilize the presence of (iso-BA)2PbI4 were further investigated through electrochemical testing. Moreover, (iso-BA)2PbI4 2D hybrid perovskites exhibited an outstanding degradation rate. The chiral perovskite (R/S-MBA)2PbI4 is able to degrade a 30 mg/L methyl orange solution completely within 5 min, making it one of the fastest catalysts for this particular organic reaction. Further, based on the electron spin resonance test, a degradation mechanism by the halide perovskite was proposed. Based on the great catalytic performance as well as good reusability and stability, (R/S-MBA)2PbI4 perovskites are expected to be a new generation of catalysts, making a great impact on the application of asymmetrically catalyzed photoreactions.

7.
Int J Biol Macromol ; 236: 123846, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36863675

ABSTRACT

Appearance of senescent beta cells in the pancreas leads to the onset of type 2 diabetes (T2D). The structural analysis of a sulfated fuco-manno-glucuronogalactan (SFGG) indicated SFGG had the backbones of interspersing 1, 3-linked ß-D-GlcpA residues, 1, 4-linked α-D-Galp residues, and alternating 1, 2-linked α-D-Manp residues and 1, 4-linked ß-D-GlcpA residues, sulfated at C6 of Man residues, C2/C3/C4 of Fuc residues and C3/C6 of Gal residues, and branched at C3 of Man residues. SFGG effectively alleviated senescence-related phenotypes in vitro and in vivo, including cell cycle, senescence-associated ß-galactosidase, DNA damage and senescence-associated secretory phenotype (SASP) -associated cytokines and hall markers of senescence. SFGG also alleviated beta cell dysfunction in insulin synthesis and glucose-stimulated insulin secretion. Mechanistically, SFGG attenuated senescence and improved beta cell function via PI3K/AKT/FoxO1 signaling pathway. Therefore, SFGG could be used for beta cell senescence treatment and alleviation of the progression of T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases , Cell Proliferation/genetics , Insulin-Secreting Cells/metabolism , Sulfates/chemistry , Cellular Senescence/genetics , Forkhead Box Protein O1/genetics
8.
Carbohydr Polym ; 299: 120176, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36876791

ABSTRACT

Tau spreading in Alzheimer's disease is mediated by cell surface heparan sulfate (HS). As a class of sulfated polysaccharides, fucoidans might compete with HS to bind tau, resulting in the cessation of tau spreading. The structural determinants of fucoidans for competition with HS binding to tau are not well understood. Sixty previously prepared fucoidans/glycans with different structural determinants were used to determine their binding abilities to tau using SPR and AlphaLISA. Finally, it was found that fucoidans had two fractions (sulfated galactofucan (SJ-I) and sulfated heteropolysaccharide (SJ-GX-3)), which exhibited strong binding abilities than heparin. Tau cellular uptake assays using wild type mouse lung endothelial cell lines were performed. It was shown SJ-I and SJ-GX-3 inhibited tau-cell interaction and tau cellular uptake, suggesting that fucoidans might be good candidates for inhibiting tau spreading. NMR titration mapped fucoidans binding sites, which could provide the theoretical basis for the design of tau spreading inhibitors.


Subject(s)
Alzheimer Disease , Endothelial Cells , Animals , Mice , Cell Membrane , Biological Transport , Heparitin Sulfate , Sulfates
9.
Heliyon ; 9(3): e13915, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36923844

ABSTRACT

Background: Rhesus macaques and humans are closely related genetically and share similar physiological and pathological characteristics. Exploring the impact of diet on the early establishment of gut microbiota in non-human primates can provide relevant clinical models for healthy infant growth and development. At present, few writers have focused on the composition and changes of the intestinal microbes of infant rhesus macaques throughout their progression from birth to formula feeding after weaning. In this study, we used 16S rRNA sequencing technology to explore the composition of the intestinal flora of rhesus macaques at different ages and analyzed the trends in the microbial changes. Results: The results showed that the relative abundance of Bifidobacterium and Lactobacillus in the intestinal flora of infant rhesus macaques significantly decreased, and Prevotella increased with age. Bifidobacterium longum and Bifidobacterium breve are effective biomarkers to predict grouping. The metabolic pathways enriched in early life mainly concentrated in glycosphingolipid biosynthesis (lacto and neolacto series) and the degradation and metabolism of alcohols and esters. Conclusions: We found that age was an important factor that affected the changes in the intestinal flora. This study revealed the change trend of flora in breastfed and formula-fed infant rhesus monkeys in different growth months, and found that the dominant flora changed greatly. This research provides a medically relevant theoretical basis for understanding the healthy development of infants.

10.
Mol Med ; 29(1): 31, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36918798

ABSTRACT

BACKGROUND: Pancreatic beta cell dysfunction and activated macrophage infiltration are early features in type 1 diabetes pathogenesis. A tricarboxylic acid cycle metabolite that can strongly activate NF-E2-related factor 2 (Nrf2) in macrophages, itaconate is important in a series of inflammatory-associated diseases via anti-inflammatory and antioxidant properties. However, its role in type 1 diabetes is unclear. We used 4-octyl itaconate (OI), the cell-permeable itaconate derivate, to explore its preventative and therapeutic effects in mouse models of type 1 diabetes and the potential mechanism of macrophage phenotype reprogramming. METHODS: The mouse models of streptozotocin (STZ)-induced type 1 diabetes and spontaneous autoimmune diabetes were used to evaluate the preventative and therapeutic effects of OI, which were performed by measuring blood glucose, insulin level, pro- and anti-inflammatory cytokine secretion, histopathology examination, flow cytometry, and islet proteomics. The protective effect and mechanism of OI were examined via peritoneal macrophages isolated from STZ-induced diabetic mice and co-cultured MIN6 cells with OI-pre-treated inflammatory macrophages in vitro. Moreover, the inflammatory status of peripheral blood mononuclear cells (PBMCs) from type 1 diabetes patients was evaluated after OI treatment. RESULTS: OI ameliorated glycemic deterioration, increased systemic insulin level, and improved glucose metabolism in STZ-induced diabetic mice and non-obese diabetic (NOD) mice. OI intervention significantly restored the islet insulitis and beta cell function. OI did not alter the macrophage count but significantly downregulated the proportion of M1 macrophages. Additionally, OI significantly inhibited MAPK activation in macrophages to attenuate the macrophage inflammatory response, eventually improving beta cell dysfunction in vitro. Furthermore, we detected higher IL-1ß production upon lipopolysaccharide stimulation in the PBMCs from type 1 diabetes patients, which was attenuated by OI treatment. CONCLUSIONS: These results provided the first evidence to date that OI can prevent the progression of glycemic deterioration, excessive inflammation, and beta cell dysfunction predominantly mediated by restricting macrophage M1 polarization in mouse models of type 1 diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Insulins , Mice , Animals , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , Leukocytes, Mononuclear , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Mice, Inbred NOD , Macrophages/metabolism , Anti-Inflammatory Agents/pharmacology , Insulins/metabolism , Insulins/pharmacology
11.
Biochem Biophys Res Commun ; 652: 103-111, 2023 04 16.
Article in English | MEDLINE | ID: mdl-36841097

ABSTRACT

Hepatocellular carcinoma (HCC) is an aggressive tumor triggered by various factors such as virus infection and alcohol abuse. Glucuronomannan polysaccharide (Gx) is a subtype of fucoidans that possesses many bioactivities, but its anti-tumor activities in HCC have not been reported. In this paper, the anti-tumor effects of glucuronomannan oligosaccharides (Gx) and its sulfated derivatives (GxSy) on hepatocarcinoma Huh7.5 cells were investigated. The anti-proliferation, anti-metastasis activities, and underlying mechanism of Gx and GxSy on Huh7.5 cells were analyzed and compared by MTT, wound healing, transwell, and western blotting assays, respectively. Results showed that the best anti-proliferation effects were G4S1 and G4S2 among 13 drugs, which were 38.67% and 30.14%, respectively. The cell migration rates were significantly inhibited by G2S1, G4S2, G6S2, and unsulfated Gn. In addition, cell invasion effects treated with G4S1, G4S2, and G6S1 decreased to 48.62%, 36.26%, and 42.86%, respectively. Furthermore, sulfated G4 regulated the expression of (p-) FAK and MAPK pathway, and sulfated G6 down-regulated the MAPK signaling pathway while activating the PI3K/AKT pathway. On the contrary, sulfated G2 and unsulfated Gx had no inhibited effects on the FAK-mTOR pathway. These results indicated that sulfated Gx derivatives have better anti-tumor activities than unsulfated Gx in cell proliferation and metastasis process in vitro, and those properties depend on the sulfation group levels. Moreover, degrees of polymerization of Gx also played a vital role in mechanisms and bioactivities. This finding shows the structure-activity relationship for developing and applying the marine oligosaccharide candidates.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Cell Line, Tumor , Sulfates/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Oligosaccharides/pharmacology , Cell Proliferation , Cell Movement , Proto-Oncogene Proteins c-akt/metabolism
12.
Exp Gerontol ; 172: 112057, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36513214

ABSTRACT

Osteoporosis (OP) is a systemic bone degenerative disease characterized by low bone mass and deteriorated microarchitecture of bone tissue, causing high morbidity and mortality rates. Bone resorption by overactivated osteoclasts (OCs) is the main cause of osteoporosis. Glucuronomannan and its oligomers (Gs) and their sulfated derivatives (SGs) were previously prepared. The anti-osteoporosis activities of these glycans were evaluated. Firstly, we determined the viability of RAW264.7 by CCK-8 test. Nextly, we investigated the inhibitory effects of Gs and SGs on the differentiation of RAW264.7 cells into OCs using tartrate-resistant acid phosphatase (TRAP) staining, F-actin ring staining, qualitative reverse-transcription polymerase chain reaction(qRT-PCR) and western blotting. TRAP staining revealed that Gs significantly blocked RANKL-induced OC generation while SGs did not exhibit this ability. F-actin staining assays demonstrated that Gs inhibits RANKL-induced actin ring formation. qRT-PCR analyses indicated that Gs dose-dependently inhibited the expression of OCs marker genes including Trap, NFATc1, c-Fos, DC-Stamp and ATP60 during the differentiation process, while SGs did not suppress. Regarding the mechanism of Gs, it was found that Gs suppressed osteoclastogenesis via inhibiting the degradation of IRF-8 and interfering with NF-κB pathway activation. Together, these results suggest that Gs have the ability to inhibit osteoclastogenesis by modulating IRF-8 signaling.


Subject(s)
Osteoporosis , Sargassum , Actins , Cell Differentiation , NF-kappa B/metabolism , NFATC Transcription Factors , Oligosaccharides/pharmacology , Osteoclasts , Osteogenesis , Osteoporosis/metabolism , Sargassum/metabolism , Animals , Mice
13.
Virol J ; 19(1): 224, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36564838

ABSTRACT

BACKGROUND: Human cytomegalovirus (HCMV), a member of the ß-herpesvirus family, causes the establishment of a latent infection that persists throughout the life of the host and can be reactivated when immunity is weakened. To date, there is no vaccine to prevent HCMV infection, and clinically approved drugs target the stage of viral replication and have obvious adverse reactions. Thus, development of novel therapeutics is urgently needed. METHODS: In the current study, we identified a naturally occurring pterostilbene that inhibits HCMV Towne strain replication in human diploid fibroblast WI-38 cells through Western blotting, qPCR, indirect immunofluorescence assay, tissue culture infective dose assays. The time-of-addition experiment was carried out to identify the stage at which pterostilbene acted. Finally, the changes of cellular senescence biomarkers and reactive oxygen species production brought by pterostilbene supplementation were used to partly elucidate the mechanism of anti-HCMV activity. RESULTS: Our findings revealed that pterostilbene prevented lytic cytopathic changes, inhibited the expression of viral proteins, suppressed the replication of HCMV DNA, and significantly reduced the viral titre in WI-38 cells. Furthermore, our data showed that pterostilbene predominantly acted after virus cell entry and membrane fusion. The half-maximal inhibitory concentration was determined to be 1.315 µM and the selectivity index of pterostilbene was calculated as 26.73. Moreover, cell senescence induced by HCMV infection was suppressed by pterostilbene supplementation, as shown by a decline in senescence-associated ß-galactosidase activity, decreased production of reactive oxygen species and reduced expression of p16, p21 and p53, which are considered biomarkers of cellular senescence. CONCLUSION: Together, our findings identify pterostilbene as a novel anti-HCMV agent that may prove useful in the treatment of HCMV replication.


Subject(s)
Cytomegalovirus , Stilbenes , Humans , Cytomegalovirus/genetics , Reactive Oxygen Species/pharmacology , Stilbenes/pharmacology , Virus Replication , Cellular Senescence
14.
Int J Mol Sci ; 23(24)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36555379

ABSTRACT

Bacterial pneumonia is one of the leading causes of death worldwide and exerts a significant burden on health-care resources. Antibiotics have long been used as first-line drugs for the treatment of bacterial pneumonia. However, antibiotic therapy and traditional antibiotic delivery are associated with important challenges, including drug resistance, low bioavailability, and adverse side effects; the existence of physiological barriers further hampers treatment. Fortunately, these limitations may be overcome by the application of nanotechnology, which can facilitate drug delivery while improving drug stability and bioavailability. This review summarizes the challenges facing the treatment of bacterial pneumonia and also highlights the types of nanoparticles that can be used for antibiotic delivery. This review places a special focus on the state-of-the-art in nanomaterial-based approaches to the delivery of antibiotics for the treatment of pneumonia.


Subject(s)
Nanoparticles , Nanostructures , Pneumonia , Humans , Anti-Bacterial Agents/therapeutic use , Nanostructures/therapeutic use , Drug Delivery Systems , Pneumonia/drug therapy , Nanotechnology , Nanoparticles/therapeutic use
15.
Front Microbiol ; 13: 959315, 2022.
Article in English | MEDLINE | ID: mdl-36225360

ABSTRACT

To explore the relationship between the changes in the physiological period and the fecal microbial population of female rhesus monkeys by measuring microbial composition of fecal samples and the serum hormones. Blood and fecal samples were collected from six female adult rhesus monkeys during the menstrual period (MP), ovulation period (OP), and Luteal period (LP). Serum estradiol (E2) and progesterone (P) levels were determined by the chemiluminescence method and the stool samples were subjected to high-throughput 16S rRNA sequencing. The highest level of E2 and P secretions were during the MP, and LP, respectively. Stool samples produced valid sequences and the number of operational taxonomic unit/OTU was: 810056/3756 (MP), 845242/4159 (OP), 881560/3970 (LP). At the phylum level, the three groups of Firmicutes and Bacteroides accounted for > 95%. The dominant flora at the LP was Bacteroides (53.85%), the dominant flora at the MP and OP was Firmicutes, 64.08 and 56.53%, respectively. At the genus level, the dominant genus at the LP was Prevotella, the dominant genera at the MP were Prevotella, Oncococcus, Streptococcus, and Kurtella. The dominant genera at OP were Prevotella and Nocococcus. At the phylum level, P levels were negatively correlated to Firmicutes, Actinomycetes Actinobacteria, and Fibrobacteres, but positively correlated to Bacteroidetes. Likewise, E2 was positively correlated to Proteobacteria but negatively correlated to Euryarchaeota. At the genus level, P hormone showed a significant correlation with 16 bacterial species, and E2 was significantly correlated to seven bacterial species. Function prediction analysis revealed a high similarity between the MP and OP with six differentially functional genes (DFGs) between them and 11 DFGs between OP and LP (P < 0.05). Fecal microbiota types of female rhesus monkeys varied with different stages of the menstrual cycle, possibly related to changes in hormone levels.

16.
Front Mol Biosci ; 9: 954752, 2022.
Article in English | MEDLINE | ID: mdl-36200072

ABSTRACT

The molecular interactions of sulfated glycans, such as heparin, with antithrombin (AT) and platelet factor 4 (PF4) are essential for certain biological events such as anticoagulation and heparin induced thrombocytopenia (HIT). In this study, a library including 84 sulfated glycans (polymers and oligomers) extracted from marine algae along with several animal-originated polysaccharides were subjected to a structure-activity relationship (SAR) study regarding their specific molecular interactions with AT and PF4 using surface plasmon resonance. In this SAR study, multiple characteristics were considered including different algal species, different methods of extraction, molecular weight, monosaccharide composition, sulfate content and pattern and branching vs. linear chains. These factors were found to influence the binding affinity of the studied glycans with AT. Many polysaccharides showed stronger binding than the low molecular weight heparin (e.g., enoxaparin). Fourteen polysaccharides with strong AT-binding affinities were selected to further investigate their binding affinity with PF4. Eleven of these polysaccharides showed strong binding to PF4. It was observed that the types of monosaccharides, molecular weight and branching are not very essential particularly when these polysaccharides are oversulfated. The sulfation levels and sulfation patterns are, on the other hand, the primary contribution to strong AT and PF4 interaction.

17.
Article in English | MEDLINE | ID: mdl-36194354

ABSTRACT

PURPOSE: Sulfated galactofucan (SWZ-4), which was extracted from Sargassum thunbergii, has recently been reported to show anti-inflammatory and anticancer properties. The present study aimed to evaluate whether SWZ-4 attenuates atherosclerosis in apolipoprotein E-knockout (ApoE-KO) mice by suppressing the inflammatory response through the TLR4/MyD88/NF-κB signaling pathway. METHODS: Male ApoE-KO mice were fed with a high-fat diet for 16 weeks and intraperitoneally injected with SWZ-4. RAW246.7 cells were treated with lipopolysaccharide (LPS) and SWZ-4. Atherosclerotic lesions were measured by Sudan IV and oil red O staining. Serum lipid profiles, inflammatory cytokines, and mRNA and protein expression levels were evaluated. RESULTS: SWZ-4 decreased serum TNF-α, IL-6 and IL-1 levels, but did not reduce blood lipid profiles. SWZ-4 downregulated the mRNA and protein expression of TLR4 and MyD88, reduced the phosphorylation of p65, and attenuated atherosclerosis in the ApoE-KO mice (p < 0.01). In LPS-stimulated RAW 264.7 cells, SWZ-4 inhibited proinflammatory cytokine production and the mRNA expression of TLR4, MyD88, and p65 and reduced the protein expression of TLR4 and MyD88 and the phosphorylation of p65 (p < 0.01). CONCLUSION: These results suggest that SWZ-4 may exert an anti-inflammatory effect on ApoE-KO atherosclerotic mice by inhibiting the TLR4/MyD88/NF-κB signaling pathway in macrophages and therefore may be a treatment for atherosclerosis.

18.
Bioorg Med Chem Lett ; 75: 128945, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35987509

ABSTRACT

Hyaluronan (HA) is a glycosaminoglycan polymer involved in cell phenotype change, inflammation modulation, and tumor metastasis progression. HA oligosaccharides have a higher solubility and drug-forming ability than polysaccharides. HA tetrasaccharide was reported as the smallest fragment required for inhibiting triple-negative breast cancer, but the anti-tumor activity of HA tetrasaccharide (HA4) and its sulfated derivatives in lung cancer is still unknown. In this study, HA4 was prepared via HA degradation by chondroitinase ABC (CSABC), while its sulfated derivatives were prepared by sulfur pyridine trioxide complex in N, N-dimethylformamide (DMF). Then, the anti-tumor activity was detected via MTT assay and xenograft tumor experiments, while the expression level change of apoptosis genes was analyzed by qRT-PCR. Electrospray mass spectrometry (ESI-MS) analysis showed several HA4 sulfated derivatives, GlcA2GlcNAc2 (SO3H)n contains 0-6 sulfation groups, which mainly contain 3-6, 2-3, and 0-1 sulfation groups were classified as HA4S1, HA4S2, and HA4S3, respectively. After the addition of 1.82 mg/mL HA4, HA4S1, HA4S2, and HA4S3, the cell viability of A549 cells was reduced to 81.2 %, 62.1 %, 50.3 %, and 65.9 %, respectively. Thus, HA4S2 was chosen for further measurement, the qRT-PCR results showed it significantly up-regulated the expression of genes in the apoptosis pathway. Moreover, HA4S2 exhibited stronger antitumor activity than HA4 in vivo and the tumor inhibition rate reached 36.90 %. In summary, this study indicated that the CSABC enzyme could effectively degrade HA into oligosaccharides, and sulfation modification was an effective method to enhance the antitumor activity of HA tetrasaccharides.


Subject(s)
Adenocarcinoma of Lung , Hyaluronic Acid , A549 Cells , Adenocarcinoma of Lung/drug therapy , Chondroitin ABC Lyase , Dimethylformamide , Humans , Hyaluronic Acid/chemistry , Hyaluronic Acid/metabolism , Hyaluronic Acid/pharmacology , Oligosaccharides/chemistry , Polymers , Pyridines , Sulfates , Sulfur , Sulfur Oxides
19.
Front Endocrinol (Lausanne) ; 13: 881256, 2022.
Article in English | MEDLINE | ID: mdl-35909530

ABSTRACT

As mitochondrial metabolism is a major determinant of ß-cell insulin secretion, mitochondrial dysfunction underlies ß-cell failure and type 2 diabetes mellitus progression. An algal polysaccharide of Laminaria japonica, sulfated fucogalactan (SFG) displays various pharmacological effects in a variety of conditions, including metabolic disease. We investigated the protective effects of SFG against hydrogen peroxide (H2O2)-induced ß-cell failure in MIN6 cells and islets. SFG significantly promoted the H2O2-inhibited proliferation in the cells and ameliorated their senescence, and potentiated ß-cell function by regulating ß-cell identity and the insulin exocytosis-related genes and proteins in H2O2-induced ß-cells. SFG also attenuated mitochondrial dysfunction, including alterations in ATP content, mitochondrial respiratory chain genes and proteins expression, and reactive oxygen species and superoxide dismutase levels. Furthermore, SFG resulted in SIRT1-PGC1-α pathway activation and upregulated the downstream Nrf2 and Tfam. Taken together, the results show that SFG attenuates H2O2-induced ß-cell failure by improving mitochondrial function via SIRT1-PGC1-α signaling pathway activation. Therefore, SFG is implicated as a potential agent for treating pancreatic ß-cell failure.


Subject(s)
Diabetes Mellitus, Type 2 , Laminaria , Animals , Diabetes Mellitus, Type 2/metabolism , Galactans , Humans , Hydrogen Peroxide/pharmacology , Laminaria/metabolism , Mice , Mitochondria/metabolism , Signal Transduction , Sirtuin 1/metabolism , Sulfates/metabolism , Sulfates/pharmacology
20.
Viruses ; 14(8)2022 07 23.
Article in English | MEDLINE | ID: mdl-35893674

ABSTRACT

Reinfection risk is a great concern with regard to the COVID-19 pandemic because a large proportion of the population has recovered from an initial infection, and previous reports found that primary exposure to SARS-CoV-2 protects against reinfection in rhesus macaques without viral presence and pathological injury; however, a high possibility for reinfection at the current stage of the pandemic has been proven. We found the reinfection of SARS-CoV-2 in Syrian hamsters with continuous viral shedding in the upper respiratory tracts and few injuries in the lung, and nasal mucosa was exploited by SARS-CoV-2 for replication and shedding during reinfection; meanwhile, no viral replication or enhanced damage was observed in the lower respiratory tracts. Consistent with the mild phenotype in the reinfection, increases in mRNA levels in cytokines and chemokines in the nasal mucosa but only slight increases in the lung were found. Notably, the high levels of neutralizing antibodies in serum could not prevent reinfection in hamsters but may play roles in benefitting the lung recovery and symptom relief of COVID-19. In summary, Syrian hamsters could be reinfected by SARS-CoV-2 with mild symptoms but with obvious viral shedding and replication, and both convalescent and vaccinated patients should be wary of the transmission and reinfection of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Disease Models, Animal , Humans , Macaca mulatta , Mesocricetus , Nasal Mucosa , Pandemics , Reinfection
SELECTION OF CITATIONS
SEARCH DETAIL
...