Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023430

ABSTRACT

Photoactivatable or "caged" pharmacological agents combine the high spatiotemporal specificity of light application with the molecular specificity of drugs. A key factor in all optopharmacology experiments is the mechanism of uncaging, which dictates the photochemical quantum yield and determines the byproducts produced by the light-driven chemical reaction. In previous work, we demonstrated that coumarin-based photolabile groups could be used to cage tertiary amine drugs as quaternary ammonium salts. Although stable, water-soluble, and useful for experiments in brain tissue, these first-generation compounds exhibit relatively low uncaging quantum yield (Φu < 1%) and release the toxic byproduct formaldehyde upon photolysis. Here, we elucidate the photochemical mechanisms of coumarin-caged tertiary amines and then optimize the major pathway using chemical modification. We discovered that the combination of 3,3-dicarboxyazetidine and bromine substituents shift the mechanism of release to heterolysis, eliminating the formaldehyde byproduct and giving photolabile tertiary amine drugs with Φu > 20%─a 35-fold increase in uncaging efficiency. This new "ABC" cage allows synthesis of improved photoactivatable derivatives of escitalopram and nicotine along with a novel caged agonist of the oxytocin receptor.

2.
Neurobiol Dis ; 171: 105801, 2022 09.
Article in English | MEDLINE | ID: mdl-35753625

ABSTRACT

Mild traumatic brain injury (mTBI) gives rise to a remarkable breadth of pathobiological consequences, principal among which are traumatic axonal injury and perturbation of the functional integrity of neuronal networks that may arise secondary to the elimination of the presynaptic contribution of axotomized neurons. Because there exists a vast diversity of neocortical neuron subtypes, it is imperative to elucidate the relative vulnerability to axotomy among different subtypes. Toward this end, we exploited SOM-IRES-Cre mice to investigate the consequences of the central fluid percussion model of mTBI on the microanatomical integrity and the functional efficacy of the somatostatin (SOM) interneuron population, one of the principal subtypes of neocortical interneuron. We found that the SOM population is resilient to axotomy, representing only 10% of the global burden of inhibitory interneuron axotomy, a result congruous with past work demonstrating that parvalbumin (PV) interneurons bear most of the burden of interneuron axotomy. However, the intact structure of SOM interneurons after injury did not translate to normal cellular function. One day after mTBI, the SOM population is more intrinsically excitable and demonstrates enhanced synaptic efficacy upon post-synaptic layer 5 pyramidal neurons as measured by optogenetics, yet the global evoked inhibitory tone within layer 5 is stable. Simultaneously, there exists a significant increase in the frequency of miniature inhibitory post-synaptic currents within layer 5 pyramidal neurons. These results are consistent with a scheme in which 1 day after mTBI, SOM interneurons are stimulated to compensate for the release from inhibition of layer 5 pyramidal neurons secondary to the disproportionate axotomy of PV interneurons. The enhancement of SOM interneuron intrinsic excitability and synaptic efficacy may represent the initial phase of a dynamic process of attempted autoregulation of neocortical network homeostasis secondary to mTBI.


Subject(s)
Brain Concussion , Animals , Axotomy , Interneurons/physiology , Mice , Parvalbumins , Somatostatin
3.
Neuropharmacology ; 212: 109066, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35461879

ABSTRACT

Many tobacco smokers consume nicotine intermittently, but the underlying mechanisms and neurobiological changes associated with intermittent nicotine intake are unclear. Understanding intermittent nicotine intake is a high priority, as it could promote therapeutic strategies to attenuate tobacco consumption. We examined nicotine intake behavior and neurobiological changes in male rats that were trained to self-administer nicotine during brief (5 min) trials interspersed with longer (15 min) drug-free periods. Rats readily adapted to intermittent access (IntA) SA following acquisition on a continuous access (ContA) schedule. Probabilistic analysis of IntA nicotine SA suggested reduced nicotine loading behavior compared to ContA, and nicotine pharmacokinetic modeling revealed that rats taking nicotine intermittently may have increased intake to maintain blood levels of nicotine that are comparable to ContA SA. After IntA nicotine SA, rats exhibited an increase in unreinforced responses for nicotine-associated cues (incubation of craving) and specific alterations in the striatal proteome after 7 days without nicotine. IntA nicotine SA also induced nAChR functional upregulation in the interpeduncular nucleus (IPN), and it enhanced nicotine binding in the brain as determined via [11C]nicotine positron emission tomography. Reducing the saliency of the cue conditions during the 5 min access periods attenuated nicotine intake, but incubation of craving was preserved. Together, these results indicate that IntA conditions promote nicotine SA and nicotine seeking after a nicotine-free period.


Subject(s)
Interpeduncular Nucleus , Nicotine , Animals , Behavior, Animal , Drug-Seeking Behavior , Interpeduncular Nucleus/metabolism , Male , Rats , Recurrence , Self Administration
4.
Neuropharmacology ; 208: 108987, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35167902

ABSTRACT

The interpeduncular nucleus (IPN) plays a key role in nicotine dependence and is involved in regulation of fear responses, affective states, and novelty processing. IPN neurons express nicotinic acetylcholine receptors (nAChR) and receive strong cholinergic innervation from the ventral medial habenula. Dorsal medial habenula neurons are primarily peptidergic, releasing substance P (SP) mainly onto IPN neurons in the lateral subnucleus (IPL). IPL neurons are sensitive to SP, but it is not known if they are involved in cholinergic transmission like other IPN neurons. We examined nAChR subunit gene expression in IPL neurons, revealing that Chrna7 (α7 nAChR subunit) is expressed in a subset of GABAergic IPL neurons. In patch-clamp recordings from IPL neurons, ACh-evoked inward currents were attenuated by methyllycaconitine (α7 nAChR antagonist) and potentiated by NS1738 (α7 Type I positive allosteric modulator). We confirmed α7 functional expression in IPL neurons by also showing that ACh-evoked currents were potentiated by PNU-120596 (Type II positive allosteric modulator). Additional pharmacological experiments show that IPN neurons expressing α7 nAChRs also express α3ß4 nAChRs. Finally, we used 2-photon laser scanning microscopy and nicotine uncaging to directly examine the morphology of IPL neurons that express α7 nAChRs. These results highlight a novel aspect of α7 nAChR neurobiology, adding to the complexity of cholinergic modulation by nAChRs in the IPN.


Subject(s)
Interpeduncular Nucleus , Receptors, Nicotinic , Cholinergic Agents/metabolism , GABAergic Neurons/metabolism , Interpeduncular Nucleus/metabolism , Receptors, Nicotinic/metabolism , alpha7 Nicotinic Acetylcholine Receptor/genetics , alpha7 Nicotinic Acetylcholine Receptor/metabolism
5.
eNeuro ; 7(4)2020.
Article in English | MEDLINE | ID: mdl-32675176

ABSTRACT

Chronic nicotine upregulates nicotinic acetylcholine receptors (nAChRs) throughout the brain, and reducing their activity may promote somatic and affective states that lead to nicotine seeking. nAChRs are functionally upregulated in animal models using passive nicotine administration, but whether/how it occurs in response to volitional nicotine intake is unknown. The distinction is critical, as drug self-administration (SA) can induce neurotransmission and cellular excitability changes that passive drug administration does not. In this study, we probed the question of whether medial habenula (MHb) nAChRs are functionally augmented by nicotine SA. Male rats were implanted with an indwelling jugular catheter and trained to nose poke for nicotine infusions. A saline SA group controlled for non-specific responding and nicotine-associated visual cues. Using patch-clamp whole-cell recordings and local application of acetylcholine, we observed robust functional enhancement of nAChRs in MHb neurons from rats with a history of nicotine SA. To determine whether upregulated receptors are generally enhanced or directed to specific cellular compartments, we imaged neurons during recordings using two-photon laser scanning microscopy (2PLSM). nAChR activity at the cell soma and on proximal and distal dendrites was examined by local nicotine uncaging using a photoactivatable nicotine (PA-Nic) probe and focal laser flash photolysis. Results from this experiment revealed strong nAChR enhancement at all examined cellular locations. Our study demonstrates nAChR functional enhancement by nicotine SA, confirming that volitional nicotine intake sensitizes cholinergic systems in the brain. This may be a critical plasticity change supporting nicotine addiction.


Subject(s)
Habenula , Receptors, Nicotinic , Tobacco Use Disorder , Animals , Habenula/metabolism , Male , Nicotine/pharmacology , Plastics , Rats , Receptors, Nicotinic/metabolism
6.
Neurochem Int ; 131: 104552, 2019 12.
Article in English | MEDLINE | ID: mdl-31545995

ABSTRACT

The inhibitory activity of (±)-citalopram on human (h) α3ß4, α4ß2, and α7 nicotinic acetylcholine receptors (AChRs) was determined by Ca2+ influx assays, whereas its effect on rat α9α10 and mouse habenular α3ß4* AChRs by electrophysiological recordings. The Ca2+ influx results clearly establish that (±)-citalopram inhibits (IC50's in µM) hα3ß4 AChRs (5.1 ±â€¯1.3) with higher potency than that for hα7 (18.8 ±â€¯1.1) and hα4ß2 (19.1 ±â€¯4.2) AChRs. This is in agreement with the [3H]imipramine competition binding results indicating that (±)-citalopram binds to imipramine sites at desensitized hα3ß4 with >2-fold higher affinity than that for hα4ß2. The electrophysiological, molecular docking, and in silico mutation results indicate that (±)-citalopram competitively inhibits rα9α10 AChRs (7.5 ± 0.9) in a voltage-independent manner by interacting mainly with orthosteric sites, whereas it inhibits a homogeneous population of α3ß4* AChRs at MHb (VI) neurons (7.6 ± 1.0) in a voltage-dependent manner by interacting mainly with a luminal site located in the middle of the ion channel, overlapping the imipramine site, which suggests an ion channel blocking mechanism. In conclusion, (±)-citalopram inhibits α3ß4 and α9α10 AChRs with higher potency compared to other AChRs but by different mechanisms. (±)-Citalopram also inhibits habenular α3ß4*AChRs, supporting the notion that these receptors are important endogenous targets related to their anti-addictive activities.


Subject(s)
Antidepressive Agents/pharmacology , Citalopram/pharmacology , Habenula/metabolism , Receptors, Nicotinic/drug effects , Animals , Antidepressive Agents, Tricyclic/metabolism , Binding, Competitive/drug effects , Calcium/metabolism , HEK293 Cells , Habenula/drug effects , Humans , Imipramine/metabolism , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Patch-Clamp Techniques , Receptors, Nicotinic/metabolism , Xenopus
7.
J Neurosci ; 39(22): 4268-4281, 2019 05 29.
Article in English | MEDLINE | ID: mdl-30867261

ABSTRACT

Antagonism of nicotinic acetylcholine receptors (nAChRs) in the medial habenula (MHb) or interpeduncular nucleus (IPN) triggers withdrawal-like behaviors in mice chronically exposed to nicotine, implying that nicotine dependence involves the sensitization of nicotinic signaling. Identification of receptor and/or neurophysiological mechanisms underlying this sensitization is important, as it could promote novel therapeutic strategies to reduce tobacco use. Using an approach involving photoactivatable nicotine, we previously demonstrated that chronic nicotine (cNIC) potently enhances nAChR function in dendrites of MHb neurons. However, whether cNIC modulates downstream components of the habenulo-interpeduncular (Hb-IP) circuit is unknown. In this study, cNIC-mediated changes to Hb-IP nAChR function were examined in mouse (male and female) brain slices using molecular, electrophysiological, and optical techniques. cNIC enhanced action potential firing and modified spike waveform characteristics in MHb neurons. Nicotine uncaging revealed nAChR functional enhancement by cNIC on proximal axonal membranes. Similarly, nAChR-driven glutamate release from MHb axons was enhanced by cNIC. In IPN, the target structure of MHb axons, neuronal morphology, and nAChR expression is complex, with stronger nAChR function in the rostral subnucleus [rostral IPN (IPR)]. As in MHb, cNIC induced strong upregulation of nAChR function in IPN neurons. This, coupled with cNIC-enhanced nicotine-stimulated glutamate release, was associated with stronger depolarization responses to brief (1 ms) nicotine uncaging adjacent to IPR neurons. Together, these results indicate that chronic exposure to nicotine dramatically alters nicotinic cholinergic signaling and cell excitability in Hb-IP circuits, a key pathway involved in nicotine dependence.SIGNIFICANCE STATEMENT This study uncovers several neuropharmacological alterations following chronic exposure to nicotine in a key brain circuit involved in nicotine dependence. These results suggest that smokers or regular users of electronic nicotine delivery systems (i.e., "e-cigarettes") likely undergo sensitization of cholinergic circuitry in the Hb-IP system. Reducing the activity of Hb-IP nAChRs, either volitionally during smoking cessation or inadvertently via receptor desensitization during nicotine intake, may be a key trigger of withdrawal in nicotine dependence. Escalation of nicotine intake in smokers, or tolerance, may involve stimulation of these sensitized cholinergic pathways. Smoking cessation therapeutics are only marginally effective, and by identifying cellular/receptor mechanisms of nicotine dependence, our results take a step toward improved therapeutic approaches for this disorder.


Subject(s)
Habenula/drug effects , Interpeduncular Nucleus/drug effects , Neural Pathways/drug effects , Nicotine/pharmacology , Animals , Female , Habenula/metabolism , Interpeduncular Nucleus/metabolism , Male , Mice , Neural Pathways/metabolism , Nicotinic Agonists/pharmacology , Receptors, Nicotinic/metabolism , Synaptic Transmission/drug effects , Tobacco Use Disorder/metabolism
8.
Cell Rep ; 23(8): 2236-2244, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29791835

ABSTRACT

Ventral tegmental area (VTA) glutamate neurons are important components of reward circuitry, but whether they are subject to cholinergic modulation is unknown. To study this, we used molecular, physiological, and photostimulation techniques to examine nicotinic acetylcholine receptors (nAChRs) in VTA glutamate neurons. Cells in the medial VTA, where glutamate neurons are enriched, are responsive to acetylcholine (ACh) released from cholinergic axons. VTA VGLUT2+ neurons express mRNA and protein subunits known to comprise heteromeric nAChRs. Electrophysiology, coupled with two-photon microscopy and laser flash photolysis of photoactivatable nicotine, was used to demonstrate nAChR functional activity in the somatodendritic subcellular compartment of VTA VGLUT2+ neurons. Finally, optogenetic isolation of intrinsic VTA glutamatergic microcircuits along with gene-editing techniques demonstrated that nicotine potently modulates excitatory transmission within the VTA via heteromeric nAChRs. These results indicate that VTA glutamate neurons are modulated by cholinergic mechanisms and participate in the cascade of physiological responses to nicotine exposure.


Subject(s)
Glutamic Acid/metabolism , Neurons/metabolism , Receptors, Nicotinic/metabolism , Synaptic Transmission , Ventral Tegmental Area/metabolism , Animals , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism
9.
Nat Methods ; 15(5): 347-350, 2018 05.
Article in English | MEDLINE | ID: mdl-29578537

ABSTRACT

Photoactivatable pharmacological agents have revolutionized neuroscience, but the palette of available compounds is limited. We describe a general method for caging tertiary amines by using a stable quaternary ammonium linkage that elicits a red shift in the activation wavelength. We prepared a photoactivatable nicotine (PA-Nic), uncageable via one- or two-photon excitation, that is useful to study nicotinic acetylcholine receptors (nAChRs) in different experimental preparations and spatiotemporal scales.


Subject(s)
Nicotine/pharmacology , Photochemical Processes , Receptors, Nicotinic/physiology , Animals , Brain/drug effects , Brain/metabolism , Calcium , Immunohistochemistry , Mice , Microscopy, Confocal , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet
10.
Am J Physiol Cell Physiol ; 305(10): C1080-90, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-23986203

ABSTRACT

Hypoglossal motoneurons (HNs) control tongue movement and play a role in maintenance of upper airway patency. Defects in these neurons may contribute to the development of sleep apnea and other cranial motor disorders including Rett syndrome (RTT). HNs are modulated by norepinephrine (NE) through α-adrenoceptors. Although postsynaptic mechanisms are known to play a role in this effect, how NE modulates the synaptic transmissions of HNs remains poorly understood. More importantly, the NE system is defective in RTT, while how the defect affects HNs is unknown. Believing that information of NE modulation of HNs may help the understanding of RTT and the design of new therapeutical interventions to motor defects in the disease, we performed these studies in which glycinergic inhibitory postsynaptic currents and intrinsic membrane properties were examined in wild-type and Mecp2(-/Y) mice, a mouse of model of RTT. We found that activation of α1-adrenoceptor facilitated glycinergic synaptic transmission and excited HNs. These effects were mediated by both pre- and postsynaptic mechanisms. The latter effect involved an inhibition of barium-sensitive G protein-dependent K(+) currents. The pre- and postsynaptic modulations of the HNs by α1-adrenoceptors were not only retained in Mecp2-null mice but also markedly enhanced, which appears to be a compensatory mechanism for the deficiencies in NE and GABAergic synaptic transmission. The existence of the endogenous compensatory mechanism is an encouraging finding, as it may allow therapeutical modalities to alleviate motoneuronal defects in RTT.


Subject(s)
Hypoglossal Nerve/cytology , Methyl-CpG-Binding Protein 2/metabolism , Motor Neurons/physiology , Receptors, Adrenergic, alpha/metabolism , Animals , Cell Membrane/physiology , Electrophysiological Phenomena , Gene Expression Regulation/physiology , Male , Methyl-CpG-Binding Protein 2/genetics , Mice , Mutation , Patch-Clamp Techniques , Receptors, Adrenergic, alpha/genetics , Synapses
11.
Am J Physiol Cell Physiol ; 304(9): C844-57, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23392116

ABSTRACT

Rett syndrome is an autism spectrum disorder resulting from defects in the gene encoding the methyl-CpG-binding protein 2 (MeCP2). Deficiency of the Mecp2 gene causes abnormalities in several systems in the brain, especially the norepinephrinergic and GABAergic systems. The norepinephrinergic neurons in the locus coeruleus (LC) modulate a variety of neurons and play an important role in multiple functions in the central nervous system. In Mecp2(-/Y) mice, defects in the intrinsic membrane properties of LC neurons have been identified, while how their synaptic inputs are affected remains unclear. Therefore, we performed these brain slice studies to demonstrate how LC neurons are regulated by GABAergic inputs and how such synaptic inputs are affected by Mecp2 knockout. In whole cell current clamp, the firing activity of LC neurons was strongly inhibited by the GABAA receptor agonist muscimol, accompanied by hyperpolarization and a decrease in input resistance. Such a postsynaptic inhibition was significantly reduced (by ~30%) in Mecp2(-/Y) mice. Post- and presynaptic GABABergic inputs were found in LC neurons, which were likely mediated by the G protein-coupled, Ba(2+)-sensitive K(+) channels. The postsynaptic GABABergic inhibition was deficient by ~50% in Mecp2 knockout mice. Although the presynaptic GABABergic modulation appeared normal, both frequency and amplitude of the GABAAergic mIPSCs were drastically decreased (by 30-40%) in Mecp2-null mice. These results suggest that the Mecp2 disruption causes defects in both post- and presynaptic GABAergic systems in LC neurons, impairing GABAAergic and GABABergic postsynaptic inhibition and decreasing the GABA release from presynaptic terminals.


Subject(s)
GABAergic Neurons/physiology , Locus Coeruleus/pathology , Methyl-CpG-Binding Protein 2/genetics , Synaptic Membranes/metabolism , Animals , Baclofen/analogs & derivatives , Baclofen/pharmacology , Female , GABA Antagonists/pharmacology , GABA-A Receptor Agonists/pharmacology , GABA-B Receptor Agonists/pharmacology , GABAergic Neurons/drug effects , GABAergic Neurons/metabolism , Humans , Male , Membrane Potentials/drug effects , Methyl-CpG-Binding Protein 2/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscimol/pharmacology , Patch-Clamp Techniques , Potassium Channel Blockers/pharmacology , Potassium Channels, Inwardly Rectifying/metabolism , Presynaptic Terminals/physiology , Receptors, GABA-A/metabolism , Receptors, GABA-B/metabolism , Rett Syndrome/genetics , Rett Syndrome/pathology , Synaptic Membranes/physiology , Synaptic Transmission , gamma-Aminobutyric Acid/metabolism
12.
Eur J Neurosci ; 36(4): 2482-92, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22616751

ABSTRACT

The intra-pallidal application of γ-aminobutyric acid (GABA) transporter subtype 1 (GAT-1) or GABA transporter subtype 3 (GAT-3) transporter blockers [1-(4,4-diphenyl-3-butenyl)-3-piperidinecarboxylic acid hydrochloride (SKF 89976A) or 1-[2-[tris(4-methoxyphenyl)methoxy]ethyl]-(S)-3-piperidinecarboxylic acid (SNAP 5114)] reduces the activity of pallidal neurons in monkey. This effect could be mediated through the activation of presynaptic GABA(B) heteroreceptors in glutamatergic terminals by GABA spillover following GABA transporter (GAT) blockade. To test this hypothesis, we applied the whole-cell recording technique to study the effects of SKF 89976A and SNAP 5114 on evoked excitatory postsynaptic currents (eEPSCs) in the presence of gabazine, a GABA(A) receptor antagonist, in rat globus pallidus slice preparations. Under the condition of postsynaptic GABA(B) receptor blockade by the intra-cellular application of N-(2,6-dimethylphenylcarbamoylmethyl)-triethylammonium bromide (OX314), bath application of SKF 89976A (10 µM) or SNAP 5114 (10 µM) decreased the amplitude of eEPSCs, without a significant effect on its holding current and whole cell input resistance. The inhibitory effect of GAT blockade on eEPSCs was blocked by (2S)-3-[[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl](phenylmethyl)phosphinic acid, a GABA(B) receptor antagonist. The paired-pulse ratio of eEPSCs was increased, whereas the frequency, but not the amplitude, of miniature excitatory postsynaptic currents was reduced in the presence of either GAT blocker, demonstrating a presynaptic effect. These results suggest that synaptically released GABA can inhibit glutamatergic transmission through the activation of presynaptic GABA(B) heteroreceptors following GAT-1 or GAT-3 blockade. In conclusion, our findings demonstrate that presynaptic GABA(B) heteroreceptors in putative glutamatergic subthalamic afferents to the globus pallidus are sensitive to increases in extracellular GABA induced by GAT inactivation, thereby suggesting that GAT blockade represents a potential mechanism by which overactive subthalamopallidal activity may be reduced in parkinsonism.


Subject(s)
GABA Plasma Membrane Transport Proteins/physiology , Globus Pallidus/physiology , Receptors, GABA-B/physiology , Synaptic Transmission/physiology , Animals , Anisoles/pharmacology , Excitatory Postsynaptic Potentials , GABA Plasma Membrane Transport Proteins/drug effects , GABA Uptake Inhibitors/pharmacology , GABA-B Receptor Antagonists/pharmacology , Glutamic Acid/physiology , Nipecotic Acids/pharmacology , Phosphinic Acids/pharmacology , Propanolamines/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, GABA-B/drug effects , Synaptic Transmission/drug effects
13.
Front Syst Neurosci ; 5: 63, 2011.
Article in English | MEDLINE | ID: mdl-21847373

ABSTRACT

GABA transporter type 1 and 3 (GAT-1 and GAT-3, respectively) are the two main subtypes of GATs responsible for the regulation of extracellular GABA levels in the central nervous system. These transporters are widely expressed in neuronal (mainly GAT-1) and glial (mainly GAT-3) elements throughout the brain, but most data obtained so far relate to their role in the regulation of GABA(A) receptor-mediated postsynaptic tonic and phasic inhibition in the hippocampus, cerebral cortex and cerebellum. Taking into consideration the key role of GABAergic transmission within basal ganglia networks, and the importance for these systems to be properly balanced to mediate normal basal ganglia function, we analyzed in detail the localization and function of GAT-1 and GAT-3 in the globus pallidus of normal and Parkinsonian animals, in order to further understand the substrate and possible mechanisms by which GABA transporters may regulate basal ganglia outflow, and may become relevant targets for new therapeutic approaches for the treatment of basal ganglia-related disorders. In this review, we describe the general features of GATs in the basal ganglia, and give a detailed account of recent evidence that GAT-1 and GAT-3 regulation can have a major impact on the firing rate and pattern of basal ganglia neurons through pre- and post-synaptic GABA(A)- and GABA(B)-receptor-mediated effects.

14.
Adv Exp Med Biol ; 717: 27-37, 2011.
Article in English | MEDLINE | ID: mdl-21713664

ABSTRACT

Kainate receptors (KARs) are one of the three subtypes of ionotropic glutamate receptors in the CNS. These receptors are widely expressed pre- and postsynaptically throughout the brain. Thus, kainate receptor activation mediates a large variety of pre- and postsynaptic effects on either glutamatergic or GABAergic synaptic transmission. Although ionotropic functions for KAR have been described in multiple brain regions, there is considerable evidence from various CNS regions that KARs activation modulates GABA release through either G-protein dependent metabotropic pathway or secondary activation of G-protein coupled receptors. In the present chapter, we provide further evidence supporting that these two pathways are also involved in the modulation of GABA release in specific basal ganglia nuclei. Because of their more subtle effects on neurotransmisison regulation than other ionotropic glutamate receptors, KARs represent interesting targets for the future development of pharmacotherapy for basal ganglia diseases.


Subject(s)
Basal Ganglia/metabolism , Receptors, Kainic Acid/metabolism , Animals , Corpus Striatum/metabolism , Globus Pallidus/metabolism , Humans , Substantia Nigra/metabolism
15.
Eur J Neurosci ; 33(8): 1504-18, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21410779

ABSTRACT

GABA transporter subtype 1 (GAT-1) and GABA transporter subtype 3 (GAT-3) are the main transporters that regulate inhibitory GABAergic transmission in the mammalian brain through GABA reuptake. In this study, we characterized the ultrastructural localizations and determined the respective roles of these transporters in regulating evoked inhibitory postsynaptic currents (eIPSCs) in globus pallidus (GP) neurons after striatal stimulation. In the young and adult rat GP, GAT-1 was preferentially expressed in unmyelinated axons, whereas GAT-3 was almost exclusively found in glial processes. Except for rare instances of GAT-1 localization, neither of the two transporters was significantly expressed in GABAergic terminals in the rat GP. 1-(4,4-Diphenyl-3-butenyl)-3-piperidinecarboxylic acid hydrochloride (SKF 89976A) (10 µm), a GAT-1 inhibitor, significantly prolonged the decay time, but did not affect the amplitude, of eIPSCs induced by striatal stimulation (15-20 V). On the other hand, the semi-selective GAT-3 inhibitor 1-(2-[tris(4-methoxyphenyl)methoxy]ethyl)-(S)-3-piperidinecarboxylic acid (SNAP 5114) (10 µm) increased the amplitude and prolonged the decay time of eIPSCs. The effects of transporter blockade on the decay time and amplitude of eIPSCs were further increased when both inhibitors were applied together. Furthermore, SKF 89976A or SNAP 5114 blockade also increased the amplitude and frequency of spontaneous IPSCs, but did not affect miniature IPSCs. Significant GABA(A) receptor-mediated tonic currents were induced in the presence of high concentrations of both SKF 89976A (30 µm) and SNAP 5114 (30 µm). In conclusion, these data indicate that GAT-1 and GAT-3 represent different target sites through which GABA reuptake may subserve complementary regulation of GABAergic transmission in the rat GP.


Subject(s)
GABA Plasma Membrane Transport Proteins/metabolism , Globus Pallidus/metabolism , Animals , Anisoles/pharmacology , Bicuculline/pharmacology , Electric Stimulation , Female , GABA Agents/pharmacology , GABA-A Receptor Antagonists/pharmacology , Globus Pallidus/cytology , Inhibitory Postsynaptic Potentials/drug effects , Male , Neurons/drug effects , Neurons/metabolism , Neurons/ultrastructure , Nipecotic Acids/pharmacology , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley
16.
Eur J Neurosci ; 23(2): 374-86, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16420445

ABSTRACT

Kainate receptors (KARs) are widely expressed the basal ganglia. In this study, we used electron microscopic immunocytochemistry and whole-cell recording techniques to examine the localization and function of KARs in the rat globus pallidus (GP). Dendrites were the most common immunoreactive elements, while terminals forming symmetric or asymmetric synapses and unmyelinated axons comprised most of the presynaptic labeling. To determine whether synaptically released glutamate activates KARs, we recorded excitatory postsynaptic currents (EPSCs) in the GP following single-pulse stimulation of the internal capsule. 4-(8-Methyl-9H-1,3-dioxolo[4,5 h]{2,3}benzodiazepine-5-yl)-benzenamine hydrochloride (GYKI 52466, 100 microm), an alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid (AMPA) receptor antagonist, reduced but did not completely block evoked EPSCs. The remaining EPSC component was mediated through activation of KARs because it was abolished by 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX), an AMPA/KAR antagonist. The rise time (10-90%) and decay time constant (tau) for those EPSCs were longer than those of AMPA-mediated EPSCs recorded before GYKI 52466 application. KAR activation inhibited EPSCs. This inhibition was associated with a significant increase in paired-pulse facilitation ratio, suggesting a presynaptic action of KAR. KAR inhibition of EPSCs was blocked by the G-protein inhibitor, N-ethylmaleimide (NEM), or the protein kinase C (PKC) inhibitor calphostin C. Our results demonstrate that KAR activation has dual effects on glutamatergic transmission in the rat GP: (1) it mediates small-amplitude EPSCs; and (2) it reduces glutamatergic synaptic transmission through a presynaptic G-protein coupled, PKC-dependent, metabotropic mechanism. These findings provide evidence for the multifarious functions of KARs in regulating synaptic transmission, and open up the possibility for the development of pharmacotherapies to reduce the hyperactive subthalamofugal projection in Parkinson's disease.


Subject(s)
Dendrites/physiology , Globus Pallidus/cytology , Neurons/physiology , Receptors, Kainic Acid/metabolism , Synapses/physiology , Synaptic Transmission/physiology , Age Factors , Animals , Animals, Newborn , Cell Count , Dendrites/drug effects , Dose-Response Relationship, Drug , Drug Interactions , Electric Stimulation/methods , Enzyme Inhibitors/pharmacology , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Excitatory Postsynaptic Potentials/radiation effects , Globus Pallidus/growth & development , In Vitro Techniques , Lysine/analogs & derivatives , Lysine/metabolism , Microscopy, Immunoelectron/methods , Patch-Clamp Techniques/methods , Rats , Rats, Sprague-Dawley , Synaptic Transmission/drug effects , Synaptic Transmission/radiation effects
17.
Guang Pu Xue Yu Guang Pu Fen Xi ; 23(2): 365-7, 2003 Apr.
Article in Chinese | MEDLINE | ID: mdl-12961897

ABSTRACT

A method for the determination of Au, Pt, Pd and Rh by ICP-AES after preconcentration on a column containing diphenylthiourea immobilized on aluminum oxide was developed. The optimum acidity of solution, amount of adsorbent, elution solution, flow rate and volume of the samples were obtained for the elements studied. The effect of interfering ions on the recovery of the analytes was also investigated. Under the optimum measuring conditions, the recoveries were found to be between 95%-105%. The detection limits of Au, Pd, Pt and Rh was 0.0085, 0.022, 0.015 and 0.022 microgram.g-1, respectively, and the relative standard deviation was lower than 5%. This procedure was applied to the determination of Au, Pd, Pt and Rh in geological samples.


Subject(s)
Gold/analysis , Palladium/analysis , Platinum/analysis , Thiourea/analogs & derivatives , Aluminum Oxide , Geological Phenomena , Geology , Rhodium/analysis , Spectrophotometry, Atomic/methods
SELECTION OF CITATIONS
SEARCH DETAIL