Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(15): 18937-18948, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38564761

ABSTRACT

The shuttle effect of soluble lithium polysulfides (LiPSs) poses a crucial challenge for commercializing lithium-sulfur batteries. The functionalization of the separator is an effective strategy for enhancing the cell lifespan through the capture and reuse of LiPSs. Herein, a novel In2O3 nanorod with an ultrathin carbon layer (In2O3@C) was coated on a polypropylene separator. The results demonstrate the adsorption and catalysis of In2O3 on polysulfides, effectively inhibiting the shuttle effect and improving the redox kinetics of LiPSs. Besides, the ultrathin carbon layer increases the reaction sites and accelerates the electrochemical reaction rate. The cell with the In2O3@C interlayer displays excellent reversibility and stability with a 0.029% capacity decay each cycle in 2000 cycles at 2C. In addition, the In2O3@C interlayer significantly improves the cell performance under high current (888.2 mA h g-1 at 2C and room temperature) and low temperature (1007.8 mA h g-1 at 0.1C and -20 °C) conditions.

2.
Small ; : e2309097, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38183380

ABSTRACT

The introduction of battery-type cathode has been commonly considered a preferred approach to boost the energy density of aqueous hybrid energy storage devices (AHESDs) in alkalic systems, but AHESDs with both high energy density and power density are rare due to the great challenge in designing battery-type anode materials with high rate and durability comparable to capacitive-type carbon anodes. In this paper, a well-hydrated iron selenate (FeSeO) sheath is constructed around FeOOH nanorods by a facile electrochemical activation, demonstrating the unique multifunction in fasting charge diffusion, promoting the dissociation of H2 O, and inhibiting the irreversible phase transition of FeOOH to inert γ-Fe2 O3 , which endow the hydrated sheath coated Fe-based anodes with an impressive rate capability and superior durability. Thanks to the comprehensive performance of this Fe-based anode, the assembled AHESD delivered a high energy density of 117 Wh kg-1 with the extraordinary durability of almost 100% capacity retention after 40 000 cycles. Even at an ultrahigh power density of 27 000 W kg-1 , an impressive energy density of 65 Wh kg-1 can be achieved, which rivals previously reported energy-storage devices.

3.
ACS Appl Mater Interfaces ; 16(3): 3552-3563, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38197727

ABSTRACT

Solid-state lithium batteries (SSLBs) have attracted much attention due to their good thermal stability and high energy density. However, solid-state electrolytes with low conductivity and prominent interfacial issues have hindered the further development of SSLBs. In this research, inspired from a selective confinement structure of anions, a novel HMOF-DNSE composite solid electrolyte with a dual selective confinement interface structure is proposed based on the semi-interpenetrating structure generated by poly(vinylidene fluoride)-hexafluoropropylene (PVDF-HFP), poly(di-n-butylmethylammonium) bis(trifluoromethanesulfonyl)imide (PDADMATFSI), and a metal-organic frameworks MOF derivative (HMOF) as a filler. The dual-network structure of PVDF-HFP/PDADMATFSI combined with HMOF formed a dual selective confinement interface structure to confine out the movement of large anions TFSI-, thereby enhancing the transfer ability of Li+. Subsequently, the addition of HMOF further improves the transfer of Li+ by binding up TFSI- through its crystal structure. The results show that HMOF-DNSE possesses a high room-temperature ionic conductivity (0.7 mS cm-1), a wide electrochemical window (up to 4.5 V), and a high Li+ transfer number (tLi+) (0.56). LiFePO4/HMOF-DNSE/Li cell shows an excellent capacity of 141.5 mAh g-1 at 1C rate under room temperature, with a high retention of 80.1% after 500 cycles. The material design strategy, which is based on selective confinement interface structures of anions, offers valuable insights into enhancing the electrochemical performance of solid-state lithium batteries.

4.
ACS Appl Mater Interfaces ; 16(3): 3489-3501, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38214534

ABSTRACT

To satisfy the demand for high safety and energy density in energy storage devices, all-solid-state lithium metal batteries with solid polymer electrolytes (SPE) replacing traditional liquid electrolytes and separators have been proposed and are increasingly regarded as one of the most promising candidates as next-generation energy storage systems. In this study, poly(vinylidene fluoride)-hexafluoropropylene/lignosulfonic acid (PVDF-HFP/LSA) composite polymer electrolyte (CPE) membranes with a micro area interface wetting structure were successfully prepared by incorporating LSA into the PVDF-HFP polymer matrix. The enhanced interaction between the polar functional group in LSA and the C═O in N-methylpyrrolidone (NMP) hinders the evaporation of solvent NMP, thus creating a micro area wetting structure, which offers a flexible region for the chain segment movement and enlarging the area of the amorphous zone in PVDF-HFP. From the results of IR and Raman spectroscopy, it was found that the presence of LSA induced unique ion transport channels created by the massive aggregated ion pair (AGG) and contact ion pair (CIP) of ion cluster structures composed of Li+ and multiple TFSI- and, at the same time, effectively reduced the crystallinity of the polymer electrolyte, hence further contributing to the Li+ diffusion. As a result, at a rate of 2 C, the Li|CPE-15|LiFePO4 solid-state battery delivers an initial discharge-specific capacity of 134.9 mAh g-1 and maintains stability with a retention of 84% during 400 charge-discharge cycles while the Li|CPE-0|LiFePO4 battery fails after only a few cycles at the same rate.

5.
Biol Trace Elem Res ; 202(2): 513-526, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37099221

ABSTRACT

Although conjugated linoleic acid (CLA) can promote human health, its content in milk is insufficient to have a significant impact. The majority of the CLA in milk is produced endogenously by the mammary gland. However, research on improving its content through nutrient-induced endogenous synthesis is relatively scarce. Previous research found that the key enzyme, stearoyl-CoA desaturase (SCD) for the synthesis of CLA, can be expressed more actively in bovine mammary epithelial cells (MAC-T) when lithium chloride (LiCl) is present. This study investigated whether LiCl can encourage CLA synthesis in MAC-T cells. The results showed that LiCl effectively increased SCD and proteasome α5 subunit (PSMA5) protein expression in MAC-T cells as well as the content of CLA and its endogenous synthesis index. LiCl enhanced the expression of proliferator-activated receptor-γ (PPARγ), sterol regulatory element-binding protein 1 (SREBP1), and its downstream enzymes acetyl CoA carboxylase (ACC), fatty acid synthase (FASN), lipoprotein lipase (LPL), and Perilipin 2 (PLIN2). The addition of LiCl significantly enhanced p-GSK-3ß, ß-catenin, p-ß-catenin protein expression, hypoxia-inducible factor-1α (HIF-1α), and downregulation factor genes for mRNA expression (P < 0.05). These findings highlight that LiCl can increase the expression of SCD and PSMA5 by activating the transcription of HIF-1α, Wnt/ß-catenin, and the SREBP1 signaling pathways to promote the conversion of trans-vaccenic acid (TVA) to the endogenous synthesis of CLA. This data suggests that the exogenous addition of nutrients can increase CLA content in milk through pertinent signaling pathways.


Subject(s)
Linoleic Acids, Conjugated , Lithium Chloride , Humans , Animals , Cattle , Lithium Chloride/pharmacology , Lithium Chloride/analysis , Lithium Chloride/metabolism , beta Catenin/metabolism , Linoleic Acids, Conjugated/analysis , Linoleic Acids, Conjugated/metabolism , Linoleic Acids, Conjugated/pharmacology , Glycogen Synthase Kinase 3 beta/analysis , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/pharmacology , Mammary Glands, Animal/metabolism , Milk/chemistry , Stearoyl-CoA Desaturase , Epithelial Cells/metabolism , Fatty Acids/metabolism
6.
Int J Mol Sci ; 24(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37834091

ABSTRACT

ß-sitosterol, a natural plant steroid, has been shown to promote anti-inflammatory and antioxidant activities in the body. In this study, ß-sitosterol was used to protect against lipopolysaccharide (LPS)-induced cell damage in bovine mammary epithelial cells, which are commonly studied as a cell model of mammary inflammatory response and lipogenesis. Results showed that treatment with a combination of LPS and ß-sitosterol significantly reduced oxidative stress and inflammation, while increasing the expression of anti-apoptotic proteins and activating the hypoxia-inducible factor-1(HIF-1α)/mammalian target of rapamycin(mTOR) signaling pathway to inhibit apoptosis and improve lipid synthesis-related gene expression. Our finding suggests that ß-sitosterol has the potential to alleviate inflammation in the mammary gland.


Subject(s)
Lipogenesis , Lipopolysaccharides , Animals , Cattle , Lipopolysaccharides/toxicity , Lipopolysaccharides/metabolism , Mammary Glands, Animal/metabolism , Inflammation/metabolism , Epithelial Cells/metabolism , Mammals/metabolism
7.
Nat Commun ; 14(1): 5986, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37794031

ABSTRACT

Engineering human tissue with diverse cell types and architectures remains challenging. The cerebral cortex, which has a layered cellular architecture composed of layer-specific neurons organised into vertical columns, delivers higher cognition through intricately wired neural circuits. However, current tissue engineering approaches cannot produce such structures. Here, we use a droplet printing technique to fabricate tissues comprising simplified cerebral cortical columns. Human induced pluripotent stem cells are differentiated into upper- and deep-layer neural progenitors, which are then printed to form cerebral cortical tissues with a two-layer organization. The tissues show layer-specific biomarker expression and develop a structurally integrated network of processes. Implantation of the printed cortical tissues into ex vivo mouse brain explants results in substantial structural implant-host integration across the tissue boundaries as demonstrated by the projection of processes and the migration of neurons, and leads to the appearance of correlated Ca2+ oscillations across the interface. The presented approach might be used for the evaluation of drugs and nutrients that promote tissue integration. Importantly, our methodology offers a technical reservoir for future personalized implantation treatments that use 3D tissues derived from a patient's own induced pluripotent stem cells.


Subject(s)
Induced Pluripotent Stem Cells , Animals , Mice , Humans , Induced Pluripotent Stem Cells/metabolism , Cerebral Cortex , Neurons/physiology , Brain , Tissue Engineering/methods , Printing, Three-Dimensional , Tissue Scaffolds
8.
Nature ; 620(7976): 1001-1006, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37648756

ABSTRACT

Bio-integrated devices need power sources to operate1,2. Despite widely used technologies that can provide power to large-scale targets, such as wired energy supplies from batteries or wireless energy transduction3, a need to efficiently stimulate cells and tissues on the microscale is still pressing. The ideal miniaturized power source should be biocompatible, mechanically flexible and able to generate an ionic current for biological stimulation, instead of using electron flow as in conventional electronic devices4-6. One approach is to use soft power sources inspired by the electrical eel7,8; however, power sources that combine the required capabilities have not yet been produced, because it is challenging to obtain miniaturized units that both conserve contained energy before usage and are easily triggered to produce an energy output. Here we develop a miniaturized soft power source by depositing lipid-supported networks of nanolitre hydrogel droplets that use internal ion gradients to generate energy. Compared to the original eel-inspired design7, our approach can shrink the volume of a power unit by more than 105-fold and it can store energy for longer than 24 h, enabling operation on-demand with a 680-fold greater power density of about 1,300 W m-3. Our droplet device can serve as a biocompatible and biological ionic current source to modulate neuronal network activity in three-dimensional neural microtissues and in ex vivo mouse brain slices. Ultimately, our soft microscale ionotronic device might be integrated into living organisms.


Subject(s)
Biocompatible Materials , Bioelectric Energy Sources , Biomimetic Materials , Electric Conductivity , Electronics , Ions , Animals , Mice , Electrons , Hydrogels/chemistry , Ions/analysis , Ions/metabolism , Eels , Nerve Net/physiology , Brain/cytology , Brain/physiology , Microchemistry
9.
Adv Mater ; 35(41): e2303360, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37494282

ABSTRACT

Fe-based battery-type anode materials with many faradaic reaction sites have higher capacities than carbon-based double-layer-type materials and can be used to develop aqueous supercapacitors with high energy density. However, as an insurmountable bottleneck, the severe capacity fading and poor cyclability derived from the inactive transition hinder their commercial application in asymmetric supercapacitors (ASCs). In this work, driven by the "oxygen pumping" mechanism, oxygen-vacancy-rich Fe@Fe3 O4 (v) @Fe3 C@C nanoparticles that consist of a unique "fruit with stone"-like structure are developed, and they exhibit enhanced specific capacity and fast charge/discharge capability. Experimental and theoretical results demonstrate that the capacity attenuation in conventional iron-based anodes is greatly alleviated in the the Fe@Fe3 O4 (v) @Fe3 C@C anode because the irreversible phase transition to the inactive γ-Fe2 O3 phase can be inhibited by a robust barrier formed by the coupling of oxygen vacancies and Fe─C bonds, which promotes cycle stability (93.5% capacity retention after 24 000 cycles). An ASC fabricated using this Fe-based anode is also observed to have extraordinary durability, achieving capacity retention of 96.4% after 38 000 cycles, and a high energy density of 127.6 W h kg-1 at a power density of 981 W kg-1 .

10.
ACS Appl Mater Interfaces ; 15(25): 30060-30069, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37314432

ABSTRACT

Li-rich layered oxide (LLO) cathode materials with mixed cationic and anionic redox reactions display much higher specific capacity than other traditional layered oxide materials. However, the practical specific capacity of LLO during the first cycle in sulfide all-solid-state lithium-ion batteries (ASSLBs) is extremely low. Herein, the capacity contribution of each redox reaction in LLO during the first charging process is qualitatively and quantitatively analyzed by comprehensive electrochemical and structural measurements. The results demonstrate that the cationic redox of the LiTMO2 (TM = Ni, Co, Mn) phase is almost complete, while the anionic redox of the Li2MnO3 phase is seriously limited due to the sluggish transport kinetics and severe LLO/Li6PS5Cl interface reaction at high voltage. Therefore, the poor intrinsic conductivity and interface stability during the anionic redox jointly restrict the capacity release or delithiation/lithiation degree of LLO during the first cycle in sulfide ASSLBs. This study reveals the origin of the seriously limited anionic redox reaction in LLO, providing valuable guidance for the bulk and interface design of high-energy-density ASSLBs.

11.
Philos Trans R Soc Lond B Biol Sci ; 378(1879): 20220312, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37122218

ABSTRACT

Atrial fibrillation (AF) is the most common chronic arrhythmia presenting a heavy disease burden. We report a new approach for generating cardiomyocytes (CMs) resembling atrial cells from human-induced pluripotent stem cells (hiPSCs) using a combination of Gremlin 2 and retinoic acid treatment. More than 40% of myocytes showed rod-shaped morphology, expression of CM proteins (including ryanodine receptor 2, α-actinin-2 and F-actin) and striated appearance, all of which were broadly similar to the characteristics of adult atrial myocytes (AMs). Isolated myocytes were electrically quiescent until stimulated to fire action potentials with an AM profile and an amplitude of approximately 100 mV, arising from a resting potential of approximately -70 mV. Single-cell RNA sequence analysis showed a high level of expression of several atrial-specific transcripts including NPPA, MYL7, HOXA3, SLN, KCNJ4, KCNJ5 and KCNA5. Amplitudes of calcium transients recorded from spontaneously beating cultures were increased by the stimulation of α-adrenoceptors (activated by phenylephrine and blocked by prazosin) or ß-adrenoceptors (activated by isoproterenol and blocked by CGP20712A). Our new approach provides human AMs with mature characteristics from hiPSCs which will facilitate drug discovery by enabling the study of human atrial cell signalling pathways and AF. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.


Subject(s)
Atrial Fibrillation , Induced Pluripotent Stem Cells , Adult , Humans , Myocytes, Cardiac/metabolism , Cell Differentiation/physiology , Atrial Fibrillation/metabolism , Receptors, Adrenergic/metabolism , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism
12.
Toxins (Basel) ; 15(3)2023 03 21.
Article in English | MEDLINE | ID: mdl-36977123

ABSTRACT

Aflatoxin B1 (AFB1), a typical fungal toxin found in feed, is highly carcinogenic. Oxidative stress is one of the main ways it exerts its toxicity; therefore, finding a suitable antioxidant is the key to reducing its toxicity. Astaxanthin (AST) is a carotenoid with strong antioxidant properties. The aim of the present research was to determine whether AST eases the AFB1-induced impairment in IPEC-J2 cells, and its specific mechanism of action. AFB1 and AST were applied to IPEC-J2 cells in different concentrations for 24 h. The AST (80 µM) significantly prevented the reduction in the IPEC-J2 cell viability that was induced by AFB1 (10 µM). The results showed that treatment with AST attenuated the AFB1-induced ROS, and cytochrome C, the Bax/Bcl2 ratio, Caspase-9, and Caspase-3, which were all activated by AFB1, were among the pro-apoptotic proteins which were diminished by AST. AST activates the Nrf2 signaling pathway and ameliorates antioxidant ability. This was further evidenced by the expression of the HO-1, NQO1, SOD2, and HSP70 genes were all upregulated. Taken together, the findings show that the impairment of oxidative stress and apoptosis, caused by the AFB1 in the IPEC-J2 cells, can be attenuated by AST triggering the Nrf2 signaling pathway.


Subject(s)
Aflatoxin B1 , Antioxidants , Antioxidants/pharmacology , Antioxidants/metabolism , Aflatoxin B1/toxicity , Aflatoxin B1/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Cell Line , Oxidative Stress , Apoptosis , Signal Transduction
13.
ACS Appl Mater Interfaces ; 15(13): 16778-16793, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36943901

ABSTRACT

High-voltage spinel LiNi0.5Mn1.5O4 (LNMO), which has the advantages of high energy density, low cost, environmental friendliness, and being cobalt-free, is considered one of the most promising cathode materials for the next generation of power lithium-ion batteries. However, the side reaction at the interface between the LNMO cathode material and electrolyte usually causes a low specific capacity, poor rate, and poor cycling performance. In this work, we propose a facilitated method to build a well-tuned dual structure of LiF coating and F- doping LNMO cathode material via simple calcination of LNMO with LiF at low temperatures. The experimental results and DFT analysis demonstrated that the powerful interface protection due to the LiF coating and the higher lithium diffusion coefficient caused by F- doping effectively improved the electrochemical performance of LNMO. The optimized LNMO-1.3LiF cathode material presents a high discharge capacity of 140.3 mA h g-1 at 1 C and 118.7 mA h g-1 at 10 C. Furthermore, the capacity is retained at 75.4% after the 1000th cycle at 1 C. Our research provides a concrete guidance on how to effectively boost the electrochemical performance of LNMO cathode materials.

14.
ACS Appl Mater Interfaces ; 15(3): 4081-4091, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36635877

ABSTRACT

The central goal of high-performance potassium ion storage is to control the function of the anode material via rational structural design. Herein, N- and S-doped hollow carbon spheres with outer-short-range-order and inner-disorder structures are constructed to achieve highly efficient and ultra-stable potassium ion storage using a low-temperature molten salt system. The ultrathin carbon walls and uniform mesoporous as well as unique heterostructure synergistically realize significant potassium storage performance via facilitating rapid diffusion of potassium ions and alleviating substantial volume expansion. Furthermore, as the anode of a potassium ion battery, the as-prepared MSTC electrode demonstrates a state-of-the-art cycling capability of 221.3 mAh g-1 at 1 A g-1 after 20,000 cycles. The assembled potassium ion hybrid capacitor device demonstrates a high energy of 157 Wh kg-1 at 956 W kg-1 and excellent reversibility at a current density of 5.0 A g-1 after 20,000 cycles with 82.7% capacity retention. Accordingly, our work provides new ideas for designing advanced carbon anode materials and understanding the charge storage mechanism in potassium ion battery, as well as constructing high energy-power density potassium-ion hybrid capacitors (PIHCs).

15.
Small Methods ; 7(3): e2201353, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36651131

ABSTRACT

Transitional metal chalcogenide (TMC) is considered as one promising high-capacity electrode material for asymmetric supercapacitors. More evidence indicates that TMCs have the same charge storage mechanism as hydroxides, but the reason why TMC electrode materials always provide higher capacity is rare to insight. In this work, a Nix Coy Mnz S/Ni(SeO3 ) (NCMS/NSeO) heterostructure is prepared on Ni-plated carbon cloth, validating that both NCMS and NSeO can be transformed into hydroxides in electrochemical process as accompanying with the formation of SeO3 2- and SOx 2- in confined spaces of NCMS/NSeO/Ni sandwich structure. Based on density functional theory calculation and experimental results, a novel space-confined acidic radical adsorption capacity-activation mechanism is proposed for the first time, which can nicely explain the capacity enhancement of NCMS/NSeO electrode materials. Thanks to the unique capacity enhancement mechanism and stable NCMS/NSeO/Ni sandwich structure, the optimized electrodes exhibit a high capacity of 536 mAh g-1 at 1 A g-1 and the impressive rate capability of 140.5 mAh g-1 at the amazing current density of 200 A g-1 . The assembled asymmetric supercapacitor achieves an ultrahigh energy density of 141 Wh Kg-1 and an impressive high-rate capability and cyclability combination with 124% capacitance retention after 10 000 cycles at a large current density of 50 A g-1 .

16.
Biol Trace Elem Res ; 201(1): 180-195, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35080710

ABSTRACT

Lithium is one of the trace elements with many physiological properties, such as being anti-cancer, anti-viral, and anti-inflammatory. However, little is known about its effect on milk synthesis during lactation. Therefore, we selected different concentrations (5 mM, 10 mM, and 20 mM) of lithium chloride (LiCl) and assessed the effect of LiCl on bovine mammary epithelial (MAC-T) cells that underwent 4 days of differentiation induction. Moreover, we analyzed the effect of LiCl on the expression of genes related to milk fat and milk protein synthesis. Herein, LiCl (5-20 mM) significantly increased the expression of ß-casein, promoted mRNA expression and phosphorylated protein expression of the signal transduction molecule and activator of transcription 5ß (STAT5-ß), and inhibited mRNA and protein expression of suppressor of cytokine signaling 2 (SOCS2). In contrast, 5 and 10 mM LiCl significantly inhibited expression of SOCS3. LiCl at concentration of 5-20 mM enhanced phosphorylation level of mTOR protein; at 10 mM and 20 mM, LiCl significantly promoted expression and phosphorylation of downstream ribosomal protein S6 kinase beta-1 (S6K1) protein. Considering milk fat synthesis, mRNA expression of acetyl CoA carboxylase (ACC) and lipoprotein lipase (LPL) genes was considerably increased in the presence of LiCl (5-20 mM). Additionally, increased protein expression levels of stearoyl-CoA desaturase (SCD), peroxisome proliferator-activated receptor-γ (PPARγ), and sterol regulatory element-binding protein 1 (SREBP1) were observed at all LiCl concentrations tested. Subsequently, LiCl (5-20 mM) significantly promoted protein expression and phosphorylation of ß-catenin, while 10 mM and 20 mM of LiCl significantly promoted protein expression of hypoxia-inducible factor-1α (HIF-1α). Collectively, it has been shown that 10 mM LiCl can effectively activate HIF-1α, ß-catenin, and ß-catenin downstream signaling pathways. Conversely, at 10 mM, LiCl inhibited SOCS2 and SOCS3 protein expression through JAK2/STAT5, mTOR, and SREBP1 signaling pathways, improving synthesis of milk protein and fat. Therefore, LiCl can be used as a potential nutrient to regulate milk synthesis in dairy cows.


Subject(s)
Lithium Chloride , Milk Proteins , Female , Cattle , Animals , Milk Proteins/metabolism , Lithium Chloride/pharmacology , Lithium Chloride/metabolism , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , beta Catenin/metabolism , Signal Transduction , RNA, Messenger/metabolism , Mammary Glands, Animal/metabolism , Epithelial Cells/metabolism
17.
Int J Mol Sci ; 23(18)2022 Sep 18.
Article in English | MEDLINE | ID: mdl-36142835

ABSTRACT

Both zearalenone (ZEA) and lipopolysaccharide (LPS) can induce oxidative stress, and even apoptosis in bovine mammary epithelial cells (MAC-T), but not much attention has been given to the synergistic effect of ZEA and LPS. In this study, we treated MAC-T cells with different concentrations of LPS (1, 10, 50, and 100 µg/mL) and ZEA (5, 15, and 30 µM) to induce cell damage. Previous results show that MAC-T cell viability decreases with increasing LPS concentration. Meanwhile, 1 µg/mL LPS and ZEA were selected for combined treatment in subsequent studies. It was found that co-treatment with ZEA and LPS increases the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), decreases mitochondrial membrane potential (MMP), and superoxide dismutase (SOD), and reduces glutathione (GSH). ZEA and LPS are found to activate endoplasmic reticulum (ER) stress by increasing the expression of glucose-regulated protein 78 kDa (GRP78), activating transcription factor 6 (ATF6) and C/EBP homologous protein (CHOP). It increases cell apoptosis by suppressing the expression of the anti-apoptotic protein B-cell lymphoma-2 (Bcl-2), indicated by up-regulation of Bcl2-associated X protein (Bax) and Cysteinyl aspartate-specific proteinases 3 (caspase-3) expression. The above results suggest that the synergistic effect of ZEA and LPS aggravate cytotoxicity.


Subject(s)
Endoplasmic Reticulum Stress , Zearalenone , Activating Transcription Factor 6/metabolism , Animals , Apoptosis , Aspartic Acid/metabolism , Caspase 3/metabolism , Cattle , Epithelial Cells/metabolism , Glucose/metabolism , Glutathione/metabolism , Lipopolysaccharides/metabolism , Lipopolysaccharides/toxicity , Malondialdehyde/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism , Zearalenone/metabolism , Zearalenone/toxicity , bcl-2-Associated X Protein/metabolism
18.
Anim Sci J ; 93(1): e13735, 2022.
Article in English | MEDLINE | ID: mdl-35644952

ABSTRACT

This study aimed to investigate the effect of summer and winter on slaughter performance, muscle quality, flavor-related substance content, and gene expression levels related to the fat metabolism of pheasants. One-hundred 1-day-old pheasants were fed for 5 months starting in March and July and then, respectively, slaughtered in summer (August) and winter (December). The results revealed that compared with summer, winter not only increased pheasant live weight, dressed percentage, full-eviscerated yield, and muscle yield (p < 0.05) but also enhanced the activities of SOD and CAT in serum (p < 0.05). Winter significantly increased meat color, the contents of inosinic acid, and flavor amino acid in muscle. Amino acid contents in leg muscles of pheasants in winter were significantly higher than in summer except for histidine (p < 0.05). Winter increased the contents of muscle mono-unsaturated fatty acid, reducing saturated fatty acid. Summer improved fat synthesis in liver, promoted the deposition of triglycerides and cholesterol, and reduced the expression levels of fat metabolism-related genes in muscle, while winter increased the expression levels of genes related to muscle fat metabolism to provide energy for body and affect muscle fatty acid profile. Overall, pheasants fed in winter had better sensory quality and flavor than summer.


Subject(s)
Fatty Acids , Galliformes , Amino Acids/analysis , Animals , Fatty Acids/analysis , Meat/analysis , Muscle, Skeletal/metabolism , Seasons
19.
Phys Chem Chem Phys ; 24(20): 12214-12225, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35575198

ABSTRACT

Spinel LiNi0.5Mn1.5O4 (LNMO) is one potential cathode candidate for next-generation high energy-density lithium-ion batteries (LIBs). However, serious capacity decay from its poor structural stability, especially at high operating temperatures, shadows its application prospects. In this work, N-doped LNMO (LNMON) was synthesized by a facile co-precipitation method and multistep calcination, exhibiting a unique yolk-shell architecture. Concurrently, N dopants are introduced into a LNMO lattice, endowing LNMON with a more stable structure via stronger Ni-N/Mn-N bindings. Benefiting from the synergistic effect of the yolk-shell structure and N-doped engineering, the obtained LNMON cathode exhibits an impressive rate and the state-of-the-art cycling capability, delivering a high capacity of 103 mA h g-1 at 25 °C after 8000 cycles. Even at a high operating temperature of 60 °C, the capacity retention remains at 92% after 1000 cycles. The discovery of N dopants in improving the cycling capability of LNMO in our case offers a prospective approach to enable 5 V LNMO cathode materials with excellent cycling capability.

20.
Toxins (Basel) ; 14(3)2022 03 15.
Article in English | MEDLINE | ID: mdl-35324708

ABSTRACT

Deoxynivalenol (DON), a mycotoxin produced by Fusarium graminearum, is one of the most prevalent contaminants in livestock feed and causes very large losses to animal husbandry every year. Taraxasterol, isolated from Taraxacum officinale, has anti-inflammatory, antioxidative stress, and antitumor effects. In the present study, bovine mammary epithelial cells (MAC-T) were used as a model, and different concentrations of taraxasterol (0, 1, 5, 10, and 20 µg/mL) were used to protect against DON-induced cell damage. The results showed that taraxasterol at a concentration of 10 µg/mL significantly increased cell viability. Analysis of lactate dehydrogenase (LDH) levels indicated that taraxasterol substantially decreased LDH release caused by DON. Taraxasterol effectively alleviated the depletion of glutathione (GSH), the increase in the lipid peroxidation of malondialdehyde (MDA), the reduction in total superoxide dismutase (T-SOD) activity, and the decrease in total antioxidant capacity (T-AOC) induced by DON. The results further showed that taraxasterol reduced the accumulation of reactive oxygen species (ROS). Taraxasterol was found to relieve endoplasmic reticulum (ER) stress by suppressing the expression of glucose-regulated protein 78 kDa (GRP78), activating transcription factor 6 (ATF6), activating transcription factor 4 (ATF4) and the transcription factor C/EBP homologous protein (CHOP), and reducing cell apoptosis by suppressing the expression of caspase-3 and Bcl2-associated X (BAX) and upregulating the expression of the antiapoptotic protein B-cell lymphoma-2 (Bcl-2). Our research results indicate that taraxasterol could alleviate DON-induced damage to MAC-T cells.


Subject(s)
Trichothecenes , Triterpenes , Animals , Apoptosis , Cattle , Endoplasmic Reticulum Stress , Epithelial Cells , Glutathione/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Sterols , Trichothecenes/metabolism , Triterpenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...