Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38938074

ABSTRACT

The charge density and charge transfer resistance of the assisting catalyst have a significant impact on the hydrogen evolution performance of bimetallic sulfides. However, existing mechanistic discussions often overlook the charge density between the two catalysts and whether the assisting catalyst produces enough photo-generated electrons. Here, we propose a simple method for the synthesis of 2-acetylene-(copper metal-organic frameworks) (ACu-MOFs) to improve the hydrogen evolution performance of bimetallic sulfides. Compared to copper metal-organic frameworks (Cu-MOFs), these ACu-MOFs have higher charge density and lower charge transfer resistance. More importantly, the introduction of alkyne-based Cu-MOFs further promotes the hydrogen evolution performance of bimetallic sulfides under 5 W LED light, and XPS is used to determine the difference in charge density between ACu-MOFs and Cu-MOFs and the improvement in contact electron transfer after bimetallic sulfide modification. This work mainly discusses the charge density, charge transfer resistance, and the number of photo-excited electrons generated, and provides a reasonable explanation.

2.
Curr Med Chem ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38860909

ABSTRACT

As members of the protein tyrosine kinase family, the Epidermal Growth Factor Receptor (EGFR) and Human Epidermal Growth Factor Receptor 2 (HER2) play essential roles in cellular signal transduction pathways. Overexpression or abnormal activation of EGFR and HER2 can lead to the development of various solid tumors. Therefore, they have been confirmed as biological targets for the development of anticancer drugs. Due to the fact that many cancers are highly susceptible to developing resistance to single-target EGFR inhibitors in clinical practice, dual inhibitors that target both EGFR and HER2 have been developed to increase efficacy, reduce drug resistance and interactions, and improve patient compliance. Currently, a variety of EGFR/HER2 dual inhibitors have been developed, with several drugs already approved for marketing or in clinical trials. In this review, we summarize recent advancements in small-molecule EGFR/HER2 dual inhibitors by focusing on structure-activity relationships and share novel insights into developing anticancer agents.

3.
J Colloid Interface Sci ; 672: 700-714, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38870761

ABSTRACT

Precisely crafting heterojunctions for efficient charge separation is a major obstacle in the realm of photocatalytic hydrogen evolution. A 0D/2D heterojunction was successfully fabricated by anchoring Ag2S quantum dots (Ag2S QDs) onto graphdiyne (GDY) nanosheets (Ag2S QDs/GDY) using a straightforward physical mixing technique. This unique structure allows for excellent contact between GDY and Ag2S QDs, thereby enhancing the rate of charge transfer. The light absorption capabilities of Ag2S QDs/GDY extend up to 1200 nm, enabling strong absorption of light, including infrared. Through DFT calculations and in-situ XPS analysis, it was demonstrated that incorporating Ag2S QDs onto GDY effectively modulates the electronic structure, promotes an internal electric field, and facilitates directional electron transfer. This directed electron transfer enhances the utilization of electrons by GDY and Ag2S QDs, with the added benefit of Ag2S QDs serving as electron reservoirs for efficient photocatalytic hydrogen evolution. A 7 %Ag2S QDs/GDY composite exhibited impressive efficiency and stable performance in photocatalytic hydrogen evolution (2418 µmol g-1 h-1), which is much higher than that of GDY and Ag2S QDs. This study conclusively demonstrates that the 0D/2D heterojunction formed by GDY and Ag2S QDs can establish high-quality contact and efficient charge transfer, ultimately enhancing photocatalytic performance.

4.
ACS Omega ; 9(19): 21270-21275, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38764683

ABSTRACT

Using low viscosity engine oil is one of the most economical and easily achievable ways to improve fuel economy. Base oil is a main component in low viscosity engine oils, and therefore, the separation and identification of its are of great significance for oil product developers to prepare high-performance lubricants. However, the extraction methods reported for base oils mainly adopt membrane dialysis, which not only fails to completely separate the base oil but also wastes a large amount of solvent. The reason for this result is that the concentration of substances inside and outside the membrane cannot always be in an imbalanced state of permeation resulting from manual operation. Additionally, most studies primarily focus on the characterization of base oil components, while there are few reports on grade identification. For the above reasons, an economically effective separation technique of base oil from low viscosity gasoline engine oil SN 0W-16 is successfully established by combining improved Soxhlet extraction and a column chromatography separation method. By applying this method, the yield of extracting base oil generally exceeds 96%, and the solvent can also save more than 3 times. Besides, an exclusion method is built through several simple characterization steps including viscosity index (VI), FT-IR, size-exclusion chromatography (SEC), and hydrocarbon composition, which can quickly identify the American Petroleum Institute (API) grade and brand of the base oils.

5.
Small ; : e2311441, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38446057

ABSTRACT

Tailoring advanced anisotropy-driven efficient separation and migration of photogenerated carriers is a pivotal stride toward enhancing photocatalytic activity. Here, CdS-MoS2 binary photocatalysts are tailored into a dumbbell shape by leveraging the rod-shaped morphology of CdS and employing an in situ tip-induction strategy. To further enhance the photocatalytic activity, an in situ photo-deposition strategy is incorporated to cultivate MnOx particles on the dumbbell-shaped CdS-MoS2 . The in situ deposition of MnOx effectively isolated the oxidatively active sites on the CdS surface, emphasizing the reductively active crystalline face of CdS, specifically the (002) face. Benefiting from its robust activity as a reduction active site, MoS2 adeptly captures photogenerated electrons, facilitating the reduction of H+ to produce hydrogen. The anisotropically driven separation of CdS photogenerated carriers markedly mitigates the Coulomb force or binding force of the photogenerated electrons, thus promoting a smoother migration toward the active site for photocatalytic hydrogen evolution. The hydrogen evolution rate of 35MnOx -CdS-MoS2 -3 surpasses that of CdS by nearly an order of magnitude, achieving a quantum efficiency of 22.30% at 450 nm. Under simulated solar irradiation, it attains a rate of 42.86 mmol g-1 h-1 . This work imparts valuable insights for the design of dual co-catalysts, anisotropy-driven spatial vectorial charge separation and migration, and the analysis of migration pathways of photogenerated carriers.

6.
Discov Oncol ; 15(1): 56, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38430429

ABSTRACT

BACKGROUND: T cell exhaustion (TEX) signifies a condition of T cell disorder which implicate the therapeutic benefits and prognostic significance in patients with cancer. However, its role in the Head and Neck Squamous Carcinoma (HNSCC) remains incompletely understood. METHODS: The detailed data of HNSCC samples were obtained from The Cancer Genome Atlas (TCGA) database and two Gene Expression Omnibus (GEO) datasets. We computed the expression scores of four TEX-related pathways and detected gene modules closely linked to these pathways, indicating prognostic significance. Following this, regression analyses were performed to select eight genes for the development of a predictive signature. The predictive capacity of this signature was evaluated. Additionally, we examined the relationships between TEX-related signature risk scores and the effectiveness of immunotherapy as well as drug sensitivity. RESULTS: A novel prognostic model, comprising eight TEX-related genes, was established for patients with HNSCC. The prognostic value was further confirmed using additional GEO datasets: GSE65858 and GSE27020. This signature enables the stratification of patients into high- and low- risk groups, each showing distinct survival outcomes and responsiveness to immunotherapy. The low-risk group demonstrated improved prognosis and enhanced efficacy of immunotherapy. In addition, AZD6482, TAF1, Ribociclib, LGK974, PF4708671 and other drugs showed increased sensitivity in the high-risk group based on drug sensitivity values, offering tailored therapeutic recommendations for individuals with various risks profiles. CONCLUSION: In conclusion, we developed a novel T cell exhaustion-associated signature, which holds considerable predictive value for both the prognosis of patients with HNSCC and the effectiveness of tumor immunotherapy.

7.
Langmuir ; 40(10): 5011-5025, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38410908

ABSTRACT

Graphdiyne (GDY) is a new two-dimensional carbon network material composed of sp2 hybrid carbon and sp hybrid carbon conjugation. It has unique physical and chemical properties, such as high porosity, good electrical conductivity, high carrier mobility, adjustable band gap, and so on. The preparation of GDY and GDY derivatives by adjusting physical and chemical methods and changing monomers has become the key material in the fields of photocatalysis, energy storage, life science, and so on. In this paper, new methods for controllable growth of GDY are reviewed, including liquid phase chemical classical total synthesis, chemical vapor deposition, the interface method, the explosion method, and the mechanically driven ball milling method. FT-IR, Raman, NMR, and XAS are the main means to characterize the structure of GDY. Finally, the representative application of GDY in the field of photocatalytic hydrogen evolution is summarized, and its future development has been explored.

8.
Nanoscale ; 16(5): 2361-2372, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38198207

ABSTRACT

An integral approach towards augmenting the performance of photocatalytic hydrogen production lies in the induction of charge transfer mediators within the material matrix itself, thereby facilitating swift and efficient charge transfer processes. Here, CoTiO3 is induced to grow its electronic attraction center, CoP3, through a high-temperature phosphatization strategy. CoP3 acts as the active reduction site for the hydrogen evolution reaction and enhances the photocatalytic performance of the pristine catalyst. Compared with pure CoTiO3, the PCTO7 hybrid catalyst with the electronic attraction center CoP3 exhibits a superior photocatalytic performance and good stability. Experimental results show that the hydrogen evolution performance of the PCTO7 hybrid catalyst reaches 56.52 µmol, which is 78 times higher than that of the single catalyst CoTiO3 (0.72 µmol). These results demonstrate that the hybrid catalyst with the self-induced electronic attraction center has a higher light absorption capacity, faster charge carrier dynamics and improved photogenerated charge carrier separation and transfer than pure CoTiO3, resulting in excellent redox capability. DFT calculations provide evidence supporting the topological metal properties of CoP3 as the electron sink center. This study provides a feasible approach for enhancing the photocatalytic performance of a pristine catalyst employing a high-temperature phosphatization-induced electron sink center.

9.
Genet Test Mol Biomarkers ; 27(12): 393-405, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38156905

ABSTRACT

Background: There is increasing evidence that abnormal expression of microRNAs is involved in the occurrence and progression of tumors. In previous experiments, we found that the content of hsa-miR-1301-3p in tumor tissues of patients with nonsmall cell lung cancer (NSCLC) showed an obvious upward trend compared with that in normal tissues. We performed a detailed study on the impact and underlying mechanism of hsa-miR-1301-3p in NSCLC cells. Methods: The impact of hsa-miR-1301-3p on NSCLC cell proliferation, apoptosis, migration, and invasion was examined using colony formation, flow cytometry, modified Boyden chamber, and wound healing assays. Different doses of radiation were applied to NSCLC cells to investigate their sensitivity to radiotherapy. The potential target gene of hsa-miR-1301-3p was determined by dual-luciferase reporter assay and immunoblotting. Result: hsa-miR-1301-3p was upregulated in NSCLC tissues and cells. hsa-miR-1301-3p effectively promoted the rapid proliferation, migration, and invasion of NSCLC cells, while inhibiting apoptosis. It also induced radioresistance in NSCLC cells. hsa-miR-1301-3p targeted the homeodomain-only protein homeobox (HOPX) mRNA 3' untranslated region and inhibited its transcription in NSCLC cells. Exogenous HOPX overexpression antagonized the mechanism by which hsa-miR-1301-3p regulates NSCLC cell proliferation, metastasis, and apoptosis. Conclusions: hsa-miR-1301-3p plays an oncogenic role in the occurrence and development of NSCLC. By targeting HOPX, hsa-miR-1301-3p can not only promote the proliferation and metastasis of NSCLC cells, but also alleviate apoptosis and reduce radiosensitivity.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/radiotherapy , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Genes, Homeobox , Lung Neoplasms/genetics , Lung Neoplasms/radiotherapy , Lung Neoplasms/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Radiation Tolerance/genetics
10.
Nanoscale ; 15(39): 16131-16143, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37754749

ABSTRACT

Dynamics and morphology play a crucial role in the field of photocatalytic hydrogen production. Regulating the transfer of photogenerated charges is an effective way to improve the catalytic activity. In this paper, 1T-WS2 is introduced into a p-n heterostructure, ZnCdS/NiV-LDH, as a metalloid electron pump to transfer photogenerated electrons from semiconductors with larger work functions to metalloid materials with smaller work functions, effectively to attract photogenerated electrons, and promote charge rearrangement at the p-n heterostructure interface, so as to achieve the best utilization efficiency of photogenerated charges. Second, adjusting the morphology to increase the light absorption area of the catalyst is also a way to improve the photocatalytic activity. Two different nanosheet structures dispersed heavily stacked ZnCdS, increasing the light absorption area of the system. The optimal catalyst ratio achieves a hydrogen evolution rate of 22.37 mmol g-1 h-1, achieving 7.98% AQE and 2.12% STH conversion efficiency at 450 nm. The potential mechanism was demonstrated through in situ XPS. This study provides new insights into adding "electron pumps" to heterostructures to enhance photocatalytic activity.

11.
Langmuir ; 39(28): 9816-9830, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37389883

ABSTRACT

As a new two-dimensional (2D) carbon hybrid material, graphdiyne has attracted much attention due to its good conductivity, adjustable electronic structure, and special electron transfer enhancement properties. In this work, graphdiyne/CuO and NiMoO4/GDY/CuO composite catalysts were prepared by cross coupling method and high temperature annealing method. The CuI introduced by clever design not only acts as a catalytic coupling but also as a precursor of CuO. The CuO produced by the postprocessing improves the inefficient charge separation of graphdiyne and provides a good acceptor for the consumption of unwanted holes. The good conductivity and strong reduction ability of graphdiyne play key roles in the performance improvement of the composite catalyst. Under the dual evidence of XPS and in situ XPS, the charge transfer mode of double S-scheme heterojunction with graphdiyne as the active site of hydrogen evolution is constructed reasonably, which not only gives full play to the performance advantages of graphdiyne but also effectively improves the separation efficiency of photogenerated carriers. In this study, a clean and efficient multicomponent system was constructed by graphdiyne, which opened up a broad application prospect in the field of photocatalytic hydrogen production.

12.
Dalton Trans ; 52(25): 8716-8727, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37310365

ABSTRACT

Among carbon allotropes, 2D graphdiyne (GDY) possesses the merits of good ductility, strong conductivity and an adjustable energy band structure. In this study, a GDY/ZnCo-ZIF S-scheme heterojunction photocatalyst has been successfully prepared by a low-temperature mixing method. Using eosin as a photosensitizer and triethanolamine as a solvent, the hydrogen production of the GDY/ZnCo-ZIF-0.9 composite reaches 171.79 µmol, which is 6.67 and 13.5 times that of the GDY and ZnCo-ZIF materials, respectively. The apparent quantum efficiency of the GDY/ZnCo-ZIF-0.9 composite at 470 nm is 2.8%. The improved photocatalytic efficiency may be attributed to the creation of an S-scheme heterojunction structure that enables efficient separation of space charges. In addition, the EY-sensitized GDY/ZnCo-ZIF catalyst endows the GDY with a special structure to provide an abundance of electrons for the ZnCo-ZIF material, thus facilitating the photocatalytic reduction reaction to produce hydrogen. A novel perspective is presented in this study regarding the construction of an S-scheme heterojunction based on graphdiyne for efficient photocatalytic hydrogen generation.

13.
Biomed Opt Express ; 14(4): 1800-1817, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37078045

ABSTRACT

LED-based photobiomodulation (LED-PBM) for the treatment of knee osteoarthritis (KOA) is a promising technology. However, the light dose at the targeted tissue, which dominates the phototherapy effectiveness, is difficult to measure. This paper studied the dosimetric issues in the phototherapy of KOA by developing an optical model of the knee and performing Monte Carlo (MC) simulation. The model was validated by the tissue phantom and knee experiments. In the study, we investigated the effect of luminous characteristics of the light source, such as divergence angle, wavelength and irradiation position, on the treatment doses for PBM. The result showed that the divergence angle and the wavelength of the light source have a significant impact on the treatment doses. The optimal irradiation location was on both sides of the patella, where the largest dose could reach the articular cartilage. This optical model can be used to determine the key parameters in phototherapy and help the phototherapy of KOA patients.

14.
J Colloid Interface Sci ; 641: 861-874, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36966575

ABSTRACT

Although Prussian blue and its analogs (PB/PBAs) have open framework structures, large surface areas, uniform metal active sites, and tunable compositions, and have been investigated for a long time, owing to their unfavorable visible light responsiveness, they rarely been reported in photocatalysis. This largely limits their applications in solar-to-chemical energy conversion. Here, a continuous-evolution strategy was conducted to convert the poor-performance NiCo PBA (NCP) toward high-efficiency complex photocatalytic nanomaterials. First, chemical etching was performed to transform raw NCP (NCP-0) to hollow-structured NCP (including NCP-30, and NCP-60) with enhanced diffusion, penetration, mass transmission of reaction species, and accessible surface area. Then, the resultant hollow NCP-60 frameworks were further converted into advanced functional nanomaterials including CoO/3NiO, NiCoP nanoparticles, and CoNi2S4 nanorods with a considerably improved photocatalytic H2 evolution performance. The hollow-structured NCP-60 particles exhibit an enhanced H2 evolution rate (1.28 mol g-1h-1) compared with the raw NCP-0 (0.64 mol g-1h-1). Furthermore, the H2 evolution rate of the resulting NiCoP nanoparticles reached 16.6 mol g-1h-1, 25 times that of the NCP-0, without any cocatalysts.

15.
Nanoscale ; 15(3): 1186-1199, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36533318

ABSTRACT

The construction of heterojunctions is considered to be an important means to promote efficient electron-hole separation in photocatalysts. However, photocatalysts have poor light absorption ability and a relatively small chance of capturing H+, and the stability needs to be improved. In this work, a non-precious metal co-catalyst Cu3P was introduced for the successful construction of p-n heterojunctions from NiO and CdS to promote charge separation while expanding the light absorption capacity and increasing the chance of H+ capture, thus enhancing the photocatalytic hydrogen precipitation activity and stability. The overall photocatalytic performance was improved by continuously optimizing the loading of NiO and Cu3P. Satisfyingly, using a 5 W LED lamp as the light source, the hydrogen evolution rate of the composite photocatalyst 15NC@Cu-10 in 10 vol% lactic acid solution is 15 612.0 µmol h-1 g-1, and the AQE reaches 10.4%. XPS analysis confirmed the direction and path of electron transfer. This synergistic strategy of co-catalyst modification of p-n heterojunctions provides a unique insight into the preparation of efficient and stable photocatalysts and also expands the applications of MOFs and their derivatives in the field of photocatalysis.

16.
J Colloid Interface Sci ; 630(Pt B): 99-110, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36327743

ABSTRACT

It is an effective way to improve the photocatalytic hydrogen evolution activity by constructing a unique structure and tuning the morphology of catalysts. On the one hand, ZIF-67 was used as a precursor to prepare Co3O4 derivatives with different morphologies [Co3O4 (Porous Polyhedron) and Co3O4db (Hollow Double-Shelled Polyhedron)]. The hollow polyhedron have the advantages of large specifie surface area, low density, stable three-dimensional spatial structure and excellent electron transport channels, which provide great advantages for the enhancement of photocatalytic activity in photocatalytic reactions. On the flip side, p-type Co3O4 polyhedron and n-type Zn0.5Cd0.5S nanoparticles are successfully coupled to construct a p-n heterojunction, which accelerated the transfer and separation of electrons and holes, thus enhancing the photocatalytic hydrogen production efficiency. Therefore, the composite catalyst (Zn0.5Cd0.5S-Co3O4db-20 %) exhibits excellent hydrogen evolution activity (33885 µmol·h-1·g-1), which is 9.17 times that of pure Zn0.5Cd0.5S (3695 µmol·h-1·g-1) and 1.21 times that of Zn0.5Cd0.5S-Co3O4-20 % (27903 µmol·h-1·g-1). This work provides a new idea for tuning the photocatalytic morphology to enhance the hydrogen evolution activity.

17.
Langmuir ; 38(50): 15632-15641, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36507799

ABSTRACT

Graphdiyne (g-CnH2n-2) is a new carbon material composed of sp and sp2 hybrid carbon atoms. Since the synthesis by Li's team, graphdiyne has been widely studied in other fields because of its excellent properties. In this paper, graphdiyne was synthesized from copper-containing materials and the composite GDY/CuI/MIL-53(Al) S-scheme heterojunction is prepared for photocatalytic cracking of water to produce hydrogen. First, GDY/CuI was prepared by organic synthesis, and then GDY/CuI was anchored on the surface of MIL-53(Al) by in situ ultrasonic stirring. After the continuous optimization of experimental conditions, the final hydrogen evolution rate is much higher than that of MIL-53(Al). This efficient photocatalytic performance can be attributed to the S-scheme heterojunction formed by the unique energy band arrangement. At the same time, the mechanism of charge transfer was demonstrated by in situ irradiation X-ray photoelectron spectroscopy. The strong interaction among the three strongly promotes the separation and transfer of photogenerated electron-hole pairs.

18.
RSC Adv ; 12(51): 32924, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36441602

ABSTRACT

[This corrects the article DOI: 10.1039/C6RA28323C.].

19.
Opt Express ; 30(18): 33353-33373, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36242376

ABSTRACT

A new simulation model for light transmission of broad-spectrum artificial light in case 1 water is introduced in this paper. The model simulates spectrum changes of fishing lamps due to absorption and scattering of seawater. According to underwater spectrum changes, this model restores the light field generated by fishing lamps and demonstrates the distribution of visual stimuli to marine organisms. The accuracy of the transmission model is verified by comparing it with experimental data. In addition, by comparing the simulation results of light transmission models of different fishing lamps in seawater of various fishing grounds, we investigate why current light-emitting diode (LED) lights are not as effective as metal halide (MH) lamps for light fishing. Lastly, suggestions for future optimization of LED fishing lamps in terms of light distribution design and spectrum configuration are provided.


Subject(s)
Light , Water , Lighting
20.
Langmuir ; 38(41): 12617-12629, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36206557

ABSTRACT

In view of the fact that the exposed catalytic active sites of single-metal MOFs cannot satisfy the efficient progress of the catalytic reaction, here we constructed a star-shaped bimetallic ZnCoMOF by introducing a Zn source by the partial ion exchange method and coprecipitation method. By controlling the quality of sodium hypophosphite, ZnCoMOF was subjected to different degrees of phosphating to optimize the experimental conditions. The introduction of the more electronegative P can attract more H+ to participate in the reduction reaction. The ZnCoMOF@CoP-5 S-scheme heterojunction was constructed in situ by generating CoP on the surface of ZnCoMOF under a PH3 reducing atmosphere, which exhibited excellent H2 evolution performance. This unique heterojunction effectively promotes the separation and transfer of e--h+ pairs, ensuring a strong redox capability. The best hydrogen-evolution performance of ZnCoMOF@CoP-5 under the EY sensitization system reaches 16 958 µmol h-1 g-1, which has significant advantages over the same type of materials and similar photocatalytic hydrogen-evolution work. Finally, the photocatalytic mechanism was demonstrated by an in situ XPS technique. Our work provides important ideas for the research of bimetallic MOFs in the field of photocatalytic hydrogen evolution.

SELECTION OF CITATIONS
SEARCH DETAIL
...