Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
ACS Appl Mater Interfaces ; 16(29): 38111-38123, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39007495

ABSTRACT

The catalytic deoxygenation of phenolic compounds is a crucial step in the valorization of biomass resources, which can effectively enhance the heating value and stability of primary biofuel. In this study, the catalytic mechanism of four Heusler alloy catalysts for the direct deoxidation pathway of phenol was studied through electronic structure regulation by element occupation. We found that Heusler alloys catalysts exhibit excellent catalytic activity in the dissociation activation of H2 and the cleavage of aryl hydroxyl bond (CAr-OH) bonds. The energy barriers for the direct cleavage of the CAr-OH bond in phenol on Ni2MoAl, Co2MoAl, Ni2NbAl and Ni2MoGa catalysts are 0.86, 0.95, 1.09, and 1.28 eV, respectively. And Y element of the X2YZ catalyst has a significant impact on this reaction, while the X element has a complex influence on the hydrogenation step of the unsaturated benzene ring. Microkinetic analysis further substantiates that the phenol (CAr-OH) bond cleavage step in the reaction exhibits a fast reaction rate and high extent of reaction. The reaction of hydroxyl hydrogenation to produce water exhibits the highest energy barrier, serving as the rate-determining step of the entire reaction. This issue could potentially be addressed by further fine-tuning the electronic structure.

2.
Bioresour Technol ; 406: 131059, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38950832

ABSTRACT

Bio-oil derived from biomass fast pyrolysis can be upgraded to gasoline and diesel alternatives by catalytic hydrodeoxygenation (HDO). Here, the novel nitrogen-doped carbon-alumina hybrid supported cobalt (Co/NCAn, n = 1, 2.5, 5) catalyst is established by a coagulation bath technique. The optimized Co/NCA2.5 catalyst presented 100 % conversion of guaiacol, high selectivity to cyclohexane (93.6 %), and extremely high deoxygenation degree (97.3 %), respectively. Therein, the formation of cyclohexanol was facilitated by stronger binding energy and greater charge transfer between Co and NC which was unraveled by density functional theory calculations. In addition, the appropriate amount of Lewis acid sites enhanced the cleavage of the C-O bond in cyclohexanol, finally resulting in a remarkable selectivity for cyclohexane. Finally, the Co/NCA2.5 catalyst also exhibited excellent selectivity (93.1 %) for high heating value hydrocarbon fuel in crude bio-oil HDO. This work provides a theoretical basis on N dopants collaborating alumina hybrid catalysts for efficient HDO reaction.


Subject(s)
Aluminum Oxide , Biofuels , Carbon , Cobalt , Nitrogen , Cobalt/chemistry , Catalysis , Aluminum Oxide/chemistry , Nitrogen/chemistry , Carbon/chemistry , Cyclohexanes/chemistry , Plant Oils , Polyphenols
4.
Chemosphere ; 279: 130514, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33873068

ABSTRACT

This study proposed a simple and green air oxidation (AO) method to prepare hierarchical porous biochar by selectively removing lignin carbon from biochar after the pyrolysis of plant-based biomass, based on the fact that the thermal decomposition temperature in air between lignin carbon and cellulose/hemicellulose carbon was different. Three kinds of biomass with different lignocellulose contents were used, including walnut shell, cypress sawdust and rice straw. The results found that AO treatment could effectively improve the pore structure of the three biochar. The specific surface area of WCO-4, CCO-4 and RCO-4 was 555.0 m2/g, 418.7 m2/g and 291.9 m2/g, respectively, which was significantly higher than those of WC (319.5 m2/g), CC (381.7 m2/g) and RC (69.6 m2/g), respectively. Among these, walnut shell biochar with air oxidation (WCO) had higher surface area of 555.0 m2/g and mesopore volume of 0.116 cm3/g, this was related to its high content of lignin, which could facilitate the formation of mesopores by AO treatment with high selectivity. The toluene adsorption capacity of WCO reached 132.9 mg/g, which increased by 223.4% from that without AO treatment. The kinetics study indicated that the diffusion rates of toluene molecule were improved due to the increased mesopores volume of biochar and micropores also play an important role in the adsorption of toluene. The results demonstrate that AO treatment is a promising method to develop hierarchical porous structure for lignocellulose-rich plant-based biomass with low cost and environmental-friendly, which greatly enhanced the toluene adsorption capacity.


Subject(s)
Carbon , Lignin , Adsorption , Biomass , Charcoal , Porosity , Toluene
5.
Sci Total Environ ; 768: 144529, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33454468

ABSTRACT

Focusing on the high-valued utilization of the widespread silicon-rich waste biomass, a sustainable route by simultaneous utilization of carbon and silicon from silicon-rich rice husk was proposed in this work. Specifically, porous carbon-zeolite composite with hierarchical porous structure of micro/meso pores (carbon) and ultra-microporous pores (Na-X zeolite) was in situ prepared by a facile one-pot method. The obtained porous carbon-zeolite composite (PC2-Z) had a higher yield of 67.66% compared to the porous carbon without silicon (PC2) of 43.33%. Moreover, due to the high ultra-micropore volume of the PC2-Z sample (up to 0.181 cm3/g), it exhibited high dynamic CO2 adsorption capacity of 1.81 mmol/g and CO2/N2 selectivity of 9.80 (1 bar), which were higher than 1.67 mmol/g and 7.01 (1 bar) for PC2, respectively. PC2-Z also showed good regeneration efficiency above 99% after ten cycles. Furthermore, the economic and energy consumption assessment of this utilization route was conducted. Overall, a facile one-pot route was developed to prepare highly efficient composite absorbents from silicon-rich biomass, which can be widely used in different environmental applications.


Subject(s)
Carbon , Zeolites , Adsorption , Biomass , Carbon Dioxide , Porosity , Silicon
6.
ACS Appl Mater Interfaces ; 12(47): 52571-52580, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33170614

ABSTRACT

Microporous carbon has been widely known as a probable material to capture greenhouse gases. This work provides a facile synthesis of monodisperse biomass-derived microporous carbon spheres (CSs) for effective CO2 capture. The spheres were synthesized by a novel continuous microfluidic strategy from oil-in-water-in-oil ((O1/W2)/O2) emulsions. O1 nanodroplets could be self-assembled into the cores of micelles, which were formed by chitosan and surfactant F127 in the W2 phase through high-speed liquid-phase shearing. The obtained O1/W2 emulsion can be further sheared into a sphere by the O2 phase. After carbonization, nanodroplet-templated pores shrank to micropores and ultramicropores. The optimal sample showed the developed pore structure with a Brunauer-Emmett-Teller (BET) surface area of 576 m2/g and microporous volume of 0.22 cm3/g. Compared with O1 free CS, the dynamic adsorption capacity of CO2 was improved to 1.20 mmol/g from 0.42 mmol/g. The CO2 capture capacity, cycling stability, isosteric heats, and mass diffusion coefficient of CSs were evaluated as well. The results demonstrate that microporous CSs are promising candidates for CO2 capture with low cost and a green synthesis route, which was achieved via continuous microfluidic strategy using sustainable biomass chitosan as a carbon precursor and droplets as templates.

7.
Chemosphere ; 249: 126127, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32074498

ABSTRACT

In this study, high concentration of H2S (i.e., 5000 ppmv) in biogas was effectively removed by a slightly alkaline biotricking filter (BTF) with Polypropylene rings as packing material and oxygen from air as the electron acceptor. The results showed that when the inlet loading of H2S increased from 101.7 to 422.0 g/m3/h, the removal efficiency of H2S decreased from 100.0% to 91.4%, and the maximum elimination capacity (EC) was 386.0 ± 10.5 gH2S/m3/h when empty bed retention time (EBRT) was 1.0 min. The slightly alkaline condition could increase the mass transfer of H2S from gas to liquid phase and avoid the toxic effect of high concentration of H2S, resulting in high removal performance of H2S in the system. With the increase of H2S inlet loading, the ratio of SO42- in bio-desulfurization products gradually decreased, while that of S0 increased. At 101.7-210.7 gH2S/m3/h of inlet loading, SO42- was the dominant product with the ratio of above 50.00%, while S0 became the dominant product with 62.96% at 422.0 gH2S/m3/h of inlet loading. The 16S rDNA sequencing results showed that the dominant genus in the BTF was sulfide-oxidizing bacteria (SOB), with the abundance of SOB decreased with the increase of inlet loading. The dominant genus were Pseudomonas, Halothiobacillus and Sulfurimonas in the BTF at 101.7, 139.8 and 210.7 gH2S/m3/h of inlet loading, respectively. The SOB Sulfurimonas might play an important role for bio-desulfurization of high concentration of H2S in a slightly alkaline BTF under high inlet loading of H2S.


Subject(s)
Biofuels , Bioreactors , Filtration/methods , Hydrogen Sulfide/metabolism , Microbiota , Bacteria , Oxygen , Polypropylenes , Sulfides
8.
Bioresour Technol ; 299: 122621, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31877481

ABSTRACT

Biological bubble-column (BBC) is beneficial for elemental sulfur recycle from H2S, but it's difficult to remove high concentration of H2S in biogas efficiently due to the mass transfer limitation of H2S from gas to liquid. In this study, a novel method with refluxing outlet gas in BBC was investigated. The results showed that gas reflux greatly enhanced the removal of high concentration of H2S (about 5000 ppmv) from biogas. The removal efficiency of H2S was 88.0 ± 4.1% with the reflux ratio at 1.0, which was higher than those without gas reflux (58.4 ± 1.0%), when the inlet H2S loading was 143.1 ± 4.5 g/(m3·h). Moreover, the removal capacity of H2S improved significantly with the increase of the reflux ratios from 1.0 to 4.0 and achieved the maximum at 271.8 ± 2.4 g/(m3·h). This might mainly be attributed to longer residence time and enhanced the mass transfer of O2 and H2S from gas to liquid through gas reflux.


Subject(s)
Biofuels , Hydrogen Sulfide , Bioreactors , Sulfur
9.
ACS Appl Bio Mater ; 3(7): 4263-4272, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-35025427

ABSTRACT

Understanding the interaction of graphene materials with bacterial cells is crucial for exploiting their environmental applications. Meanwhile, knowledge on the mechanism of graphene oxide (GO) action to bacteria is still incomplete. This study focused on the inter-relationship of biocompatible GO and the well-known dissimilatory metal-reducing bacteria Shewanella, in view of the biographene hydrogel (BGH), a self-assembly of GO and live bacteria. The results showed that, among various inter-related physicochemical properties of GO, the sheet area determined the bacterial survival and the gelation potential with the same Shewanella strain. For the biocompatible GO sheet above 0.30 µm2, the larger the GO, the higher the speed of BGH assembling. Only 22 h was needed to obtain BGH using GO with an average area of 1.83 µm2 (maximum in this study). The GO oxidation degree was found to be another critical factor affecting whether BGH formed or not, with a referential threshold of C/O > 1.75. Finally, surface force of GO was detected and correlated with the bacterial adhesion behavior for the first time, confirming that the large GO in the low oxidation state has high resultant force to attract bacteria. All these findings pave a promising way to develop a GO-bacteria complex like BGH to treat industrial wastewater in the future.

10.
Chemosphere ; 190: 201-210, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28987409

ABSTRACT

The interaction between bacteria and graphene-family materials like pristine graphene, graphene oxide (GO) and reduced graphene oxide (rGO) is such an elusive issue that its implication in environmental biotechnology is unclear. Herein, two kinds of self-assembled bio-rGO-hydrogels (BGHs) were prepared by cultivating specific Shewanella sp. strains with GO solution for the first time. The microscopic examination by SEM, TEM and CLSM indicated a porous 3D structure of BGHs, in which live bacteria firmly anchored and extracellular polymeric substances (EPS) abundantly distributed. Spectra of XRD, FTIR, XPS and Raman further proved that GO was reduced to rGO by bacteria along with the gelation process, which suggests a potential green technique to produce graphene. Based on the characterization results, four mechanisms for the BGH formation were proposed, i.e., stacking, bridging, rolling and cross-linking of rGO sheets, through the synergistic effect of activities and EPS from special bacteria. More importantly, the BGHs obtained in this study were found able to achieve unique cleanup performance that the counterpart free bacteria could not fulfill, as exemplified in Congo red decolorization and Cr(VI) bioreduction. These findings therefore enlighten a prospective application of graphene materials for the biological treatment of wastewaters in the future.


Subject(s)
Bacteria/metabolism , Biodegradation, Environmental , Graphite/metabolism , Hydrogel, Polyethylene Glycol Dimethacrylate , Water Purification/methods , Bacteria/drug effects , Graphite/chemistry , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Hydrogel, Polyethylene Glycol Dimethacrylate/metabolism , Hydrogel, Polyethylene Glycol Dimethacrylate/pharmacology , Wastewater/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL