Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Microorganisms ; 7(10)2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31618850

ABSTRACT

Ammonia oxidizing archaea (AOA) are microbes that are widely distributed in the ocean that convert ammonia to nitrite for energy acquisition in the presence of oxygen. Recent study has unraveled highly diverse sublineages within the previously defined AOA ecotypes (i.e., water column A (WCA) and water column B (WCB)), although the eco-physiology and environmental determinants of WCB subclades remain largely unclear. In this study, we examined the AOA communities along the water columns (40-3000 m depth) in the Costa Rica Dome (CRD) upwelling region in the eastern tropical North Pacific Ocean. Highly diverse AOA communities that were significantly different from those in oxygenated water layers were observed in the core layer of the oxygen minimum zone (OMZ), where the dissolved oxygen (DO) concentration was < 2µM. Moreover, a number of AOA phylotypes were found to be enriched in the OMZ core. Most of them were negatively correlated with DO and were also detected in other OMZs in the Arabian Sea and Gulf of California, which suggests low oxygen adaptation. This study provided the first insight into the differential niche partitioning and environmental determinants of various subclades within the ecotype WCB. Our results indicated that the ecotype WCB did indeed consist of various sublineages with different eco-physiologies, which should be further explored.

2.
PLoS One ; 8(10): e78275, 2013.
Article in English | MEDLINE | ID: mdl-24205176

ABSTRACT

Anaerobic ammonia oxidation (anammox) as an important nitrogen loss pathway has been reported in marine oxygen minimum zones (OMZs), but the community composition and spatial distribution of anammox bacteria in the eastern tropical North Pacific (ETNP) OMZ are poorly determined. In this study, anammox bacterial communities in the OMZ off Costa Rica (CRD-OMZ) were analyzed based on both hydrazine oxidoreductase (hzo) genes and their transcripts assigned to cluster 1 and 2. The anammox communities revealed by hzo genes and proteins in CRD-OMZ showed a low diversity. Gene quantification results showed that hzo gene abundances peaked in the upper OMZs, associated with the peaks of nitrite concentration. Nitrite and oxygen concentrations may therefore colimit the distribution of anammox bacteria in this area. Furthermore, transcriptional activity of anammox bacteria was confirmed by obtaining abundant hzo mRNA transcripts through qRT-PCR. A novel hzo cluster 2x clade was identified by the phylogenetic analysis and these novel sequences were abundant and widely distributed in this environment. Our study demonstrated that both cluster 1 and 2 anammox bacteria play an active role in the CRD-OMZ, and the cluster 1 abundance and transcriptional activity were higher than cluster 2 in both free-living and particle-attached fractions at both gene and transcriptional levels.


Subject(s)
Genes, Bacterial/genetics , Genetic Variation/genetics , Hydrazines/metabolism , Oxidoreductases/genetics , Oxygen/metabolism , Ammonia/metabolism , Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Costa Rica , DNA, Bacterial/genetics , Geologic Sediments/microbiology , Nitrites/metabolism , Oxidoreductases/metabolism , Phylogeny , RNA, Messenger/genetics , Transcription, Genetic/genetics
3.
Microbiologyopen ; 2(1): 130-43, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23281331

ABSTRACT

Coastal marine hypoxic, or low-oxygen, episodes are an increasing worldwide phenomenon, but its effect on the microbial community is virtually unknown by far. In this study, the community structure and phylogeny of picoeukaryotes in the Gulf of Mexico, which are exposed to severe hypoxia in these areas was explored through a clone library approach. Both oxic surface waters and suboxic bottom waters were collected in August 2010 from three representative stations on the inner Louisiana shelf near the Atchafalaya and Mississippi River plumes. The bottom waters of the two more western stations were much more hypoxic in comparison to those of the station closest to the Mississippi River plume, which were only moderately hypoxic. A phylogenetic analysis of a total 175 sequences, generated from six 18S rDNA clone libraries, demonstrated a clear dominance of parasitic dinoflagellates from Marine alveolate clades I and II in all hypoxic waters as well as in the surface layer at the more western station closest to the Atchafalaya River plume. Species diversity was significantly higher at the most hypoxic sites, and many novel species were present among the dinoflagellate and stramenopile clades. We concluded that hypoxia in the Gulf of Mexico causes a significant shift in picoeukaryote communities, and that hypoxia may cause a shift in microbial food webs from grazing to parasitism.


Subject(s)
Biota , Eukaryota/classification , Eukaryota/isolation & purification , Oxygen/analysis , Seawater/chemistry , Seawater/parasitology , Genetic Variation , Gulf of Mexico , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL