Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
1.
China CDC Wkly ; 6(4): 69-74, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38313817

ABSTRACT

Introduction: Plague is a zoonotic disease that occurs naturally in specific geographic areas. Climate change can influence the populations of the plague host or vector, leading to variations in the occurrence and epidemiology of plague in animals. Methods: In this study, we collected meteorological and plague epidemiological data from the Marmota himalayana plague focus in the Altun Mountains of the Qinghai-Xizang Plateau. The data spanned from 2000 to 2022. We describe the climatic factors and plague epidemic conditions and we describe their analysis by Pearson's correlation. Results: During the period from 2000 to 2022, the isolation rates of Yersinia pestis (Y.pestis) from marmots and fleas were 9.27% (451/4,864) and 7.17% (118/1,646), respectively. Additionally, we observed a positive rate of F1 antibody of 11.25% (443/3,937) in marmots and 18.16% (142/782) in dogs. With regards to climate, there was little variation, and a decreasing trend in blowing-sand days was observed. The temperature in the previous year showed a negative correlation with the Y. pestis isolation rate in marmots (r=-0.555, P=0.011) and the positive rate of F1 antibody in marmots (r=-0.552, P=0.012) in the current year. The average annual precipitation in the previous two years showed a positive correlation with marmot density (r=0.514, P=0.024), while blowing-sand days showed a negative correlation with marmot density (r=-0.701, P=0.001). Furthermore, the average annual precipitation in the previous three years showed a positive correlation with the isolation rate of Y. pestis from marmots (r=0.666, P=0.003), and blowing-sand days showed a negative correlation with marmot density (r=-0.597, P=0.009). Conclusions: The findings of this study indicate that there is a hysteresis effect of climate change on the prevalence of plague. Therefore, monitoring climate conditions can offer significant insights for implementing timely preventive and control measures to combat plague epidemics.

2.
Int J Med Microbiol ; 314: 151597, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38217947

ABSTRACT

Pasteurella multocida is a zoonotic pathogen causing serious diseases in humans and animals. Here, we report P. multocida from wildlife on China's Qinghai-Tibet plateau with a novel capsular serotype, forming a single branch on the core-genome phylogenetic tree: four strains isolated from dead Himalayan marmot (Marmota himalayana) and one genome assembled from metagenomic sequencing of a dead Woolly hare (Lepus oiostolus). Four of the strains were identified as subspecies multocida and one was septica. The mouse model showed that the challenge strain killed mice within 24 h at an infectious dose of less than 300 bacteria. The short disease course is comparable to septicemic plague: the host has died before more severe pathological changes could take place. Though pathological changes were relatively mild, cytokine storm was obvious with a significant rise of IL-12p70, IL-6, TNF-αand IL-10 (P < 0.05). Our findings suggested P. multocida is a lethal pathogen for wildlife on Qinghai-Tibet plateau, in addition to Yersinia pestis. Individuals residing within the M. himalayana plague focus are at risk for P. multocida infection, and public health warnings are necessitated.


Subject(s)
Pasteurella multocida , Plague , Animals , Humans , Mice , Tibet , Marmota/microbiology , Pasteurella multocida/genetics , Phylogeny , Serogroup , China , Plague/microbiology , Animals, Wild
3.
Front Public Health ; 11: 1186800, 2023.
Article in English | MEDLINE | ID: mdl-37724314

ABSTRACT

Brucellosis is an important zoonosis and a multisystem disease. The signs and symptoms of brucellosis are not specific. In the clinical, brucellosis is often ignored and misdiagnosed. We report a case of brucellosis who was misdiagnosed as coronavirus disease 2019 (COVID-19)/influenza and received delayed treatment during strict COVID-19 control. The neglect of other diseases due to COVID-19 and empirical diagnosis and treatment by medical staff are part of the reasons for misdiagnosis. Otherwise, the normal erythrocyte sedimentation rate (ESR), increased white blood cell count (WBC), and increased neutrophil count (NEUT) of this patient was also a cause of misdiagnosis, which is an important reminder for diagnosis. For patients with the unknown origin of fever and other symptoms related to brucellosis, especially those from endemic areas of brucellosis, brucellosis screening is a priority item, and grassroots doctors should be vigilant and standardize the diagnosis and treatment based on epidemiology history, clinical manifestation, and laboratory tests according to the diagnostic criteria of brucellosis.


Subject(s)
Brucellosis , COVID-19 , Influenza, Human , Humans , Animals , Influenza, Human/diagnosis , COVID-19/diagnosis , Zoonoses , Brucellosis/diagnosis , China
4.
Int J Infect Dis ; 135: 91-94, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37595679

ABSTRACT

Lysinibacillus sphaericus, as an insect pathogen, is a ubiquitous Gram-positive bacterium present in the environment. It is often considered to be contaminating bacteria. L. sphaericus has been reported to cause infectious diseases in humans relatively rarely. We report a rare case of bacteremia due to L. sphaericus in a person living with HIV, which is also the first reported case of bacteremia caused by L. sphaericus in China. L. sphaericus easily causes infection in immunocompromised individuals. We found that L. sphaericus and Lysinibacillus fusiformis could not be distinguished by their 16S ribosomal RNA gene sequence. We performed a genome-wide analysis of the isolated strains of this case and predicted the virulence factors. Finally, L. sphaericus was confirmed. According to antimicrobial susceptibility test, the strain was found to be sensitive to levofloxacin and vancomycin but resistant to penicillin. Greater attention to L. sphaericus infection should be paid and immunocompromised populations should be protected from L. sphaericus infection.

5.
Ecol Evol ; 13(8): e10387, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37529582

ABSTRACT

Plague is a typical natural focus disease that circulates in different ecology of vectors and reservoir hosts. We conducted genomic population and phylogenetic analyses of the Yersinia pestis collected from the 12 natural plague foci in China with more than 20 kinds of hosts and vectors. Different ecological landscapes with specific hosts, vectors, and habitat which shape various niches for Y. pestis. The phylogeographic diversity of Y. pestis in different kinds plague foci in China showed host niches adaptation. Most natural plague foci strains are region-and focus-specific, with one predominant subpopulation; but the isolates from the Qinghai-Tibet plateau harbor a higher genetic diversity than other foci. The Y. pestis from Marmota himalayana plague foci are defined as the ancestors of different populations at the root of the evolutionary tree, suggesting several different evolutionary paths to other foci. It has the largest pan-genome and widest SNP distances with most accessory genes enriched in mobilome functions (prophages, transposons). Geological barriers play an important role in the maintenance of local Y. pestis species and block the introduction of non-native strains. This study provides new insights into the control of plague outbreaks and epidemics, deepened the understanding of the evolutionary history of MHPF (M. himalayana plague focus) in China. The population structure and identify clades among different natural foci of China renewed the space cognition of the plague.

6.
BMC Microbiol ; 23(1): 177, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37407923

ABSTRACT

BACKGROUND: The increasing incidence and prevalence of carbapenem-resistant Enterobacter cloacae complex (CREC) poses great challenges to infection prevention and disease treatment. However, much remains unknown about the clinical characteristics of CREC isolates. Our objective was to characterize antimicrobial resistance and, carbapenemase production in CREC with 36 CREC isolates collected from a tertiary hospital in Shandong, China. RESULTS: Three types of carbapenemases (NDM, IMP and VIM) were detected in these isolates. Among them, NDM carbapenemases were most prevalent, with a 61.2% (22/36) detection rate for NDM-1, 27.8% (10/36) for NDM-5 and 2.8% (1/36) for NDM-7. IMP-4 was found in two isolates and VIM-1 in only one isolate. The MLST analysis identified 12 different sequence types (STs), of which ST171 (27.8%) was the most prevalent, followed by ST418 (25.0%). ST171 isolates had significantly higher rates of resistance than other STs to gentamicin and tobramycin (Ps < 0.05), and lower rates of resistance to aztreonam than ST418 and other STs (Ps < 0.05). Among 17 carbapenemase-encoding genes, the blaNDM-5 gene was more frequently detected in ST171 than in ST418 and other isolates (Ps < 0.05). In contrast, the blaNDM-1 gene was more frequently seen in ST418 than in ST171 isolates. One novel ST (ST1965) was identified, which carried the blaNDM-1 gene. CONCLUSION: NDM-5 produced by ST171 and NDM-1 carbapenemase produced by ST418 were the leading cause of CREC in this hospital. This study enhances the understanding of CREC strains and helps improve infection control and treatment in hospitals.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Enterobacteriaceae Infections , Humans , Enterobacter cloacae/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Carbapenems/pharmacology , Tertiary Care Centers , Multilocus Sequence Typing , Enterobacteriaceae Infections/epidemiology , beta-Lactamases/genetics , Bacterial Proteins/genetics , Carbapenem-Resistant Enterobacteriaceae/genetics , China/epidemiology , Microbial Sensitivity Tests
7.
China CDC Wkly ; 5(26): 565-571, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37457852

ABSTRACT

What is already known about this topic?: The hospital-acquired infections caused by New Delhi metallo-beta-lactamase (NDM)-producing strains are typically attributed to a single clonal lineage. What is added by this report?: In this study, we encountered a unique case of community-acquired NDM-5 Escherichia coli urinary tract infection (UTI) following coronavirus disease 2019 (COVID-19). The UTI persisted for a duration of at least 45 days. Genomic analyses revealed the presence of two NDM-5 strains, both sharing an identical chromosomal background but distinct, homologous, and recombined plasmids. This case suggests that a diverse range of resistance genes may be present within the human body, with drug-resistant strains undergoing continuous evolution during infection. The intestinal tract may have been its drug-resistant gene pool. What are the implications for public health practice?: The observations presented in this case indicate that the endogenous acquisition of drug-resistant genes may also be an issue in managing multidrug-resistant organisms (MDRO). It is possible for continuous recombination to occur within carbapenem-resistant Enterobacteriaceae (CRE) during infection. In contrast to exogenously-acquired resistance, greater attention should be placed on the endogenous factors that contribute to the development of CRE within healthcare settings.

8.
China CDC Wkly ; 5(20): 442-445, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37274768

ABSTRACT

What is already known about this topic?: The prevalence of rodent-adapted Bartonella species has been increasing significantly. However, the specific Bartonella species carried by Marmota himalayana (M. himalayana), a large rodent species, and the potential risk it poses to human populations remain unknown. What is added by this report?: Bartonella washoensis (B. washoensis), associated with human endocarditis, was initially identified in M. himalayana, exhibiting a detection rate of approximately one-third and demonstrating a predilection for the heart and lungs. The discovery of the novel Sequence Type 22 has expanded both the isolation source and genetic lineage of B. washoensis. What are the implications for public health practice?: Individuals residing within the M. himalayana plague focus are at an elevated risk for B. washoensis infection. Consequently, there is a pressing need for public health warnings and efficient clinical case identification in this population.

9.
Am J Trop Med Hyg ; 108(6): 1201-1203, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37127273

ABSTRACT

Brucellosis is a common zoonotic disease. For this study, the residents of Akesai Kazak Autonomous County, located in the high altitude of the Altun Mountains region of Gansu Province, were selected. These people rely on traditional animal husbandry for their main income. The prevalence of brucellosis and the change of antibody titer in this high-risk population were analyzed, and information on the epidemic in animals in the county was obtained from data records. One hundred ninety-nine persons were screened and 240 serum samples were collected. Eight persons and 27 serum samples were positive based on the rose bengal plate test, and seven persons were confirmed positive by standard agglutination test; 16,000 sheep were tested, of which 130 from nine different households were serum antibody positive. The results indicate that brucellosis seroprevalence increased among sheep and high-risk populations, and the occurrence of cases corresponded to the epidemic among animals. The incidence of human brucellosis was closely related to occupation, and the cases were mainly distributed among herdsmen and butchers. Most cases were asymptomatic or mild, and the serum antibody titers showed a high initial titer but a rapid decline in young cases, whereas those in older cases were relatively low but showed a slow decline.


Subject(s)
Brucellosis , Humans , Animals , Sheep , Aged , Seroepidemiologic Studies , Brucellosis/diagnosis , Brucellosis/epidemiology , Brucellosis/veterinary , Zoonoses/epidemiology , Risk Factors , China/epidemiology
10.
Infect Dis Poverty ; 12(1): 41, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37085902

ABSTRACT

BACKGROUND: Yersinia enterocolitica has been sporadically recovered from animals, foods, and human clinical samples in various regions of Ningxia, China. However, the ecological and molecular characteristics of Y. enterocolitica, as well as public health concerns about infection in the Ningxia Hui Autonomous Region, remain unclear. This study aims to analyze the ecological and molecular epidemiological characteristics of Y. enterocolitis in order to inform the public health intervention strategies for the contains of related diseases. METHODS: A total of 270 samples were collected for isolation [animals (n = 208), food (n = 49), and patients (n = 13)], then suspect colonies were isolated and identified by the API20E biochemical identification system, serological tests, biotyping tests, and 16S rRNA-PCR. Then, we used an ecological epidemiological approach combined with machine learning algorithms (general linear model, random forest model, and eXtreme Gradient Boosting) to explore the associations between ecological factors and the pathogenicity of Y. enterocolitis. Furthermore, average nucleotide identity (ANI) estimation, single nucleotide polymorphism (SNP), and core gene multilocus sequence typing (cgMLST) were applied to characterize the molecular profile of isolates based on whole genome sequencing. The statistical test used single-factor analysis, Chi-square tests, t-tests/ANOVA-tests, Wilcoxon rank-sum tests, and Kruskal-Wallis tests. RESULTS: A total of 270 isolates of Yersinia were identified from poultry and livestock (n = 191), food (n = 49), diarrhoea patients (n = 13), rats (n = 15), and hamsters (n = 2). The detection rates of samples from different hosts were statistically different (χ2 = 22.636, P < 0.001). According to the relatedness clustering results, 270 isolates were divided into 12 species, and Y. enterocolitica (n = 187) is a predominated species. Pathogenic isolates made up 52.4% (98/187), while non-pathogenic isolates made up 47.6% (89/187). Temperature and precipitation were strongly associated with the pathogenicity of the isolates (P < 0.001). The random forest (RF) prediction model showed the best performance. The prediction result shows a high risk of pathogenicity Y. enterocolitica was located in the northern, northwestern, and southern of the Ningxia Hui Autonomous Region. The Y. enterocolitica isolates were classified into 54 sequence types (STs) and 125 cgMLST types (CTs), with 4/O:3 being the dominant bioserotype in Ningxia. The dominant STs and dominant CTs of pathogenic isolates in Ningxia were ST429 and HC100_2571, respectively. CONCLUSIONS: The data indicated geographical variations in the distribution of STs and CTs of Y. enterocolitica isolates in Ningxia. Our work offered the first evidence that the pathogenicity of isolates was directly related to fluctuations in temperature and precipitation of the environment. CgMLST typing strategies showed that the isolates were transmitted to the population via pigs and food. Therefore, strengthening health surveillance on pig farms in high-risk areas and focusing on testing food of pig origin are optional strategies to prevent disease outbreaks.


Subject(s)
Yersinia Infections , Yersinia enterocolitica , Swine , Animals , Humans , Rats , Yersinia enterocolitica/genetics , Yersinia Infections/epidemiology , Yersinia Infections/veterinary , Public Health , Molecular Epidemiology , RNA, Ribosomal, 16S/genetics
11.
Front Public Health ; 10: 990218, 2022.
Article in English | MEDLINE | ID: mdl-36466443

ABSTRACT

The Altun Mountains are among the most active regions of Marmota himalayana plague foci of the Qinghai-Tibet Plateau where animal plague is prevalent, whereas only three human cases have been found since 1960. Animal husbandry is the main income for the local economy; brucellosis appears sometimes in animals and less often in humans. In this study, a retrospective investigation of plague and brucellosis seroprevalence among humans and animals was conducted to improve prevention and control measures for the two diseases. Animal and human sera were collected for routine surveillance from 2018 to 2021 and screened for plague and brucellosis. Yersinia pestis F1 antibody was preliminarily screened by the colloidal gold method at the monitoring site to identify previous infections with positive serology. Previous plague infection was found in 3.2% (14/432) of the studied human population having close contact with livestock, which indicates evidence of exposure to the Yersinia antigen (dead or live pathogenic materials) in the Altun Mountains. Seroprevalence of brucellosis was higher in camels (6.2%) and sheepdogs (1.8%) than in other livestock such as cattle and sheep, suggesting a possible transmission route from secondary host animals to humans.


Subject(s)
Brucellosis , Plague , Cattle , Humans , Animals , Sheep , Marmota , Plague/epidemiology , Plague/veterinary , Seroepidemiologic Studies , Retrospective Studies , Tibet/epidemiology , Brucellosis/epidemiology , Brucellosis/veterinary
12.
Microbiol Spectr ; 10(6): e0166222, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36219109

ABSTRACT

This study analyzed the epidemiological characteristics of 3,464 human plague cases and the distribution pattern of 4,968 Yersinia pestis isolates from humans, hosts, and vector insects from 1950 to 2020 among two natural plague foci in Yunnan Province, China. These foci include the Rattus flavipectus plague focus of the Yunnan, Guangdong, and Fujian provinces and the Apodemus chevrieri-Eothenomys miletus plague focus of the highlands of northwestern Yunnan Province. The case fatality rate for plague in humans was 18.39% (637/3,464), and the total isolation rate of Y. pestis was 0.17% (4,968/2,975,288). Despite that the frequency of human cases declined rapidly, the animal plague fluctuated greatly, alternating between activity and inactivity in these foci. The tendency among human cases can be divided into 4 stages, 1950 to 1955, 1956 to 1989, 1990 to 2005, and 2006 to 2020. Bubonic plague accounted for the majority of cases in Yunnan, where pneumonic and septicemic plague rarely occurred. The natural plague foci have been in a relatively active state due to the stability of local ecology. Dense human population and frequent contact with host animals contribute to the high risk of human infection. This study systematically analyzed the epidemic pattern of human plague and the distribution characteristics of Y. pestis in the natural plague foci in Yunnan, providing a scientific basis for further development and adjustment of plague prevention and control strategies. IMPORTANCE Yunnan is the origin of the third plague pandemic. The analysis of human and animal plague characteristics of plague foci in Yunnan enlightens the prevention and control of the next plague pandemics. The plague characteristics of Yunnan show that human plague occurred when animal plague reached a certain scale, and strengthened surveillance of animal plague and reducing the density of host animals and transmission vectors contribute to the prevention and control of human plague outbreaks. The phenomenon of alternation between the resting period and active period of plague foci in Yunnan further proves the endogenous preservation mechanism of plague.


Subject(s)
Plague , Yersinia pestis , Rats , Animals , Humans , Plague/epidemiology , Plague/veterinary , China/epidemiology , Disease Outbreaks , Pandemics
13.
Front Microbiol ; 13: 936425, 2022.
Article in English | MEDLINE | ID: mdl-35942314

ABSTRACT

Focusing on resistance trends and transmission patterns of pathogenic microorganisms is a major priority for national surveillance programs. The use of whole-genome sequencing for antimicrobial susceptibility testing (WGS-AST) is a powerful alternative to traditional microbiology laboratory methods. Yersinia enterocolitica antimicrobial resistance (AMR) in the Ningxia Hui Autonomous Region has yet to be described thoroughly in current studies. We assessed and monitored the development of Y. enterocolitica AMR in the Ningxia Hui Autonomous Region during 2007-2019 based on WGS-AST. Resistance genotypes were predicted based on WGS. Antimicrobial resistance testing using classical microbiology determined resistance to 13 antimicrobial agents in 189 Y. enterocolitica isolates from Ningxia. The highest resistance level was 97.88% for cefazolin, followed by ampicillin (AMP) (44.97%), ciprofloxacin (CIP) (25.40%), streptomycin (STR) (11.11%), and tetracycline (TET) (10.58%). Isolates emerged as chloramphenicol (CHL) and trimethoprim/sulfamethoxazole (SXT) resistant. The primary plasmid types were IncFII(Y) and ColRNAI. The TET, STR, and SXT resistance were mediated by the tetA, aph(6)-Id, aph(3″)-Ib, and sul2 genes located on the IncQ1 plasmid. The resistant strains were predominantly biotype 4/O:3/ST429 and the hosts were pigs and patients. The number of multidrug-resistant (MDR) strains was of concern, at 27.51%. At present, the prediction of antimicrobial resistance based on WGS requires a combination of phenotypes. From 2007 to 2019, Y. enterocolitica isolates from the Ningxia Hui Autonomous Region showed a relatively high rate of resistance to cefazolin (CZO) and some resistance to AMP, CIP, STR, and TET. CIP, SXT, and TET showed a relatively clear trend of increasing resistance. Plasmids carrying multiple drug resistance genes are an important mechanism for the spread of antimicrobial resistance. Isolates with low pathogenicity were more likely to present an AMR phenotype than non-pathogenic isolates.

14.
Vector Borne Zoonotic Dis ; 22(8): 410-418, 2022 08.
Article in English | MEDLINE | ID: mdl-35787155

ABSTRACT

In April 2021, a plague outbreak was identified within one Marmota himalayana family shortly after emerging from hibernation, during plague surveillance in the M. himalayana plague foci of the Qinghai-Tibet Plateau. A total of five marmots were found dead of Yersinia pestis near the same burrow; one live marmot was positive of Y. pestis fraction 1 (F1) antibody. Comparative genome analysis shows that few single nucleotide polymorphisms were detected among the nine strains, indicating the same origin of the outbreak. The survived marmot shows a high titer of F1 antibody, higher than the mean titer of all marmots during the 2021 monitoring period (W = 391.00, Z = 2.81, p < 0.01). Marmots live with Y. pestis during hibernation when the pathogen is inhibited by hypothermia. But they wake up during or just after hibernation with body temperature rising to 37°C, when Y. pestis goes through optimal growth temperature, increases virulence, and causes death in marmots. A previous report has shown human plague cases caused by excavating marmots during winter; combined, this study shows the high risk of hibernation marmot carrying Y. pestis. This analysis provides new insights into the transmission of the highly virulent Y. pestis in M. himalayana plague foci and drives further effort upon plague control during hibernation.


Subject(s)
Hibernation , Plague , Rodent Diseases , Yersinia pestis , Animals , Disease Outbreaks , Humans , Marmota , Plague/epidemiology , Plague/veterinary , Rodent Diseases/epidemiology , Yersinia pestis/genetics
15.
Sci Rep ; 12(1): 12178, 2022 07 16.
Article in English | MEDLINE | ID: mdl-35842437

ABSTRACT

Cryptosporidium spp. and Giardia duodenalis are commonly detected intestinal protozoa species in humans and animals, contributing to global gastroenteritis spread. The present study examined the prevalence and zoonotic potential of Cryptosporidium spp. and G. duodenalis in Himalayan marmots and Alashan ground squirrels in China's Qinghai-Tibetan Plateau area (QTPA) for the first time. Four hundred ninety-eight intestinal content samples were collected from five counties of QTPA of Gansu province, China. All samples were examined for Cryptosporidium spp. and G. duodenalis by PCR amplification. The resultant data were statistically analyzed by chi-square, Fisher's test and Bonferroni correction using SPSS software 25. 0. Cryptosporidium positive samples were further subtyped through analysis of the 60-kDa glycoprotein (gp60) gene sequence. A total of 11 and 8 samples were positive for Cryptosporidium spp. and G. duodenalis, respectively. Prevalence of Cryptosporidium spp. and G. duodenalis were 2.5% (10/399) and 1.5% (6/399) in Himalayan marmots, 1.0% (1/99) and 2.0% (2/99) in Alashan ground squirrels, respectively. Sequence analysis confirmed the presence of C. rubeyi (n = 2), ground squirrel genotype II (n = 7), chipmunk genotype V (n = 1) and horse genotype (n = 1). The horse genotype was further subtyped as novel subtype VIbA10. G. duodenalis zoonotic assemblages A (n = 1), B (n = 6), E (n = 1) were identified in the present study. This is the first study to identify Cryptosporidium spp. and G. duodenalis in Himalayan marmots and Alashan ground squirrels, suggesting the potential zoonotic transmission of the two pathogens in QTPA.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Giardia lamblia , Giardiasis , Animals , China/epidemiology , Cryptosporidiosis/epidemiology , Cryptosporidiosis/parasitology , Cryptosporidium/genetics , Feces/parasitology , Genotype , Giardia lamblia/genetics , Giardiasis/epidemiology , Giardiasis/parasitology , Giardiasis/veterinary , Horses , Humans , Rodentia
16.
Front Public Health ; 10: 910872, 2022.
Article in English | MEDLINE | ID: mdl-35692330

ABSTRACT

Introduction: The Qinghai-Tibet Plateau is considered the most plague-heavy region in China, and skinning and eating marmots (Marmota himalayana) are understood to be the main exposure factors to plague. Yersinia pestis is relatively inactive during marmots' hibernation period. However, this case report shows plague infection risk is not reduced but rather increased during the marmot hibernation period if plague exposure is not brought under control. Case Presentation: The patient was a 45-year-old man who presented with high fever, swelling of axillary lymph nodes, and existing hand wounds on his right side. Y. pestis was isolated from his blood and lymphatic fluid. Hence, the patient was diagnosed with a confirmed case of bubonic plague. Later, his condition progressed to septicemic plague. Plague exposure through wounds and delays in appropriate treatment might have contributed to plague progression. Conclusion: This case report reveals that excavating a hibernating marmot is a significant transmission route of plague. Plague prevention and control measures are priority needs during the marmot hibernation period.


Subject(s)
Marmota , Yersinia pestis , Animals , China , Humans , Male , Middle Aged
17.
BMC Genomics ; 23(1): 335, 2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35490230

ABSTRACT

BACKGROUND: Human granulocytic anaplasmosis is a tick-borne zoonotic disease caused by Anaplasma phagocytophilum. Coinfections with A. phagocytophilum and other tick-borne pathogens are reported frequently, whereas the relationship between A. phagocytophilum and flea-borne Yersnia pestis is rarely concerned. RESULTS: A. phagocytophilum and Yersnia pestis were discovered within a Marmota himalayana found dead in the environment, as determined by 16S ribosomal rRNA sequencing. Comparative genomic analyses of marmot-derived A. phagocytophilum isolate demonstrated its similarities and a geographic isolation from other global strains. The 16S rRNA gene and GroEL amino acid sequence identity rates between marmot-derived A. phagocytophilum (JAHLEX000000000) and reference strain HZ (CP000235.1) are 99.73% (1490/1494) and 99.82% (549/550), respectively. 16S rRNA and groESL gene screenings show that A. phagocytophilum is widely distributed in marmots; the bacterium was more common in marmots found dead (24.59%, 15/61) than in captured marmots (19.21%, 29/151). We found a higher Y. pestis isolation rate in dead marmots harboring A. phagocytophilum than in those without it (2 = 4.047, p < 0.05). Marmot-derived A. phagocytophilum was able to live in L929 cells and BALB/c mice but did not propagate well. CONCLUSIONS: In this study, A. phagocytophilum was identified for the first time in Marmota himalayana, a predominant Yersinia pestis host. Our results provide initial evidence for M. himalayana being a reservoir for A. phagocytophilum; moreover, we found with the presence of A. phagocytophilum, marmots may be more vulnerable to plague. Humans are at risk for co-infection with both pathogens by exposure to such marmots.


Subject(s)
Anaplasma phagocytophilum , Anaplasmosis , Ticks , Anaplasma phagocytophilum/genetics , Anaplasmosis/microbiology , Animals , Marmota/genetics , Mice , RNA, Ribosomal, 16S/genetics , Ticks/microbiology
18.
Article in English | MEDLINE | ID: mdl-35314583

ABSTRACT

BACKGROUND: Although previous studies have shown that meteorological factors such as temperature are related to the incidence of bacillary dysentery (BD), researches about the non-linear and interaction effect among meteorological variables remain limited. The objective of this study was to analyze the effects of temperature and other meteorological variables on BD in Beijing-Tianjin-Hebei region, which is a high-risk area for BD distribution. METHODS: Our study was based on the daily-scale data of BD cases and meteorological variables from 2014 to 2019, using generalized additive model (GAM) to explore the relationship between meteorological variables and BD cases and distributed lag non-linear model (DLNM) to analyze the lag and cumulative effects. The interaction effects and stratified analysis were developed by the GAM. RESULTS: A total of 147,001 cases were reported from 2014 to 2019. The relationship between temperature and BD was approximately liner above 0 °C, but the turning point of total temperature effect was 10 °C. Results of DLNM indicated that the effect of high temperature was significant on lag 5d and lag 6d, and the lag effect showed that each 5 °C rise caused a 3% [Relative risk (RR) = 1.03, 95% Confidence interval (CI): 1.02-1.05] increase in BD cases. The cumulative BD cases delayed by 7 days increased by 31% for each 5 °C rise in temperature above 10 °C (RR = 1.31, 95% CI: 1.30-1.33). The interaction effects and stratified analysis manifested that the incidence of BD was highest in hot and humid climates. CONCLUSIONS: This study suggests that temperature can significantly affect the incidence of BD, and its effect can be enhanced by humidity and precipitation, which means that the hot and humid environment positively increases the incidence of BD.


Subject(s)
Dysentery, Bacillary , Beijing/epidemiology , China/epidemiology , Dysentery, Bacillary/epidemiology , Humans , Humidity , Temperature
19.
Lancet Reg Health West Pac ; 20: 100361, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35036977

ABSTRACT

BACKGROUND: Acute meningitis or encephalitis (AME) results from a neurological infection causing high case fatality and severe sequelae. AME lacked comprehensive surveillance in China. METHODS: Nation-wide surveillance of all-age patients with AME syndromes was conducted in 144 sentinel hospitals of 29 provinces in China. Eleven AME-causative viral and bacterial pathogens were tested with multiple diagnostic methods. FINDINGS: Between 2009 and 2018, 20,454 AME patients were recruited for tests. Based on 9,079 patients with all-four-virus tested, 28.43% (95% CI: 27.50%‒29.36%) of them had at least one virus-positive detection. Enterovirus was the most frequently determined virus in children <18 years, herpes simplex virus and Japanese encephalitis virus were the most frequently determined in 18-59 and ≥60 years age groups, respectively. Based on 6,802 patients with all-seven-bacteria tested, 4.43% (95% CI: 3.94%‒4.91%) had at least one bacteria-positive detection, Streptococcus pneumoniae and Neisseria meningitidis were the leading bacterium in children aged <5 years and 5-17 years, respectively. Staphylococcus aureus was the most frequently detected in adults aged 18-59 and ≥60 years. The pathogen spectrum also differed statistically significantly between northern and southern China. Joinpoint analysis revealed age-specific positive rates, with enterovirus, herpes simplex virus and mumps virus peaking at 3-6 years old, while Japanese encephalitis virus peaked in the ≥60 years old. As age increased, the positive rate for Streptococcus pneumoniae and Escherichia coli statistically significantly decreased, while for Staphylococcus aureus and Streptococcus suis it increased. INTERPRETATION: The current findings allow enhanced identification of the predominant AME-related pathogen candidates for diagnosis in clinical practice and more targeted application of prevention and control measures in China, and a possible reassessment of vaccination strategy. FUNDING: China Mega-Project on Infectious Disease Prevention and the National Natural Science Funds.

20.
PLoS One ; 16(11): e0259706, 2021.
Article in English | MEDLINE | ID: mdl-34797849

ABSTRACT

BACKGROUND: China is vulnerable to zoonotic disease transmission due to a large agricultural work force, sizable domestic livestock population, and a highly biodiverse ecology. To better address this threat, representatives from the human, animal, and environmental health sectors in China held a One Health Zoonotic Disease Prioritization (OHZDP) workshop in May 2019 to develop a list of priority zoonotic diseases for multisectoral, One Health collaboration. METHODS: Representatives used the OHZDP Process, developed by the US Centers for Disease Control and Prevention (US CDC), to prioritize zoonotic diseases for China. Representatives defined the criteria used for prioritization and determined questions and weights for each individual criterion. A review of English and Chinese literature was conducted prior to the workshop to collect disease specific information on prevalence, morbidity, mortality, and Disability-Adjusted Life Years (DALYs) from China and the Western Pacific Region for zoonotic diseases considered for prioritization. RESULTS: Thirty zoonotic diseases were evaluated for prioritization. Criteria selected included: 1) disease hazard/severity (case fatality rate) in humans, 2) epidemic scale and intensity (in humans and animals) in China, 3) economic impact, 4) prevention and control, and 5) social impact. Disease specific information was obtained from 792 articles (637 in English and 155 in Chinese) and subject matter experts for the prioritization process. Following discussion of the OHZDP Tool output among disease experts, five priority zoonotic diseases were identified for China: avian influenza, echinococcosis, rabies, plague, and brucellosis. CONCLUSION: Representatives agreed on a list of five priority zoonotic diseases that can serve as a foundation to strengthen One Health collaboration for disease prevention and control in China; this list was developed prior to the emergence of SARS-CoV-2 and the COVID-19 pandemic. Next steps focused on establishing a multisectoral, One Health coordination mechanism, improving multisectoral linkages in laboratory testing and surveillance platforms, creating multisectoral preparedness and response plans, and increasing workforce capacity.


Subject(s)
Consensus Development Conferences as Topic , Zoonoses/prevention & control , Animals , China , Humans , Zoonoses/epidemiology , Zoonoses/transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...