Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Publication year range
1.
Yi Chuan ; 41(2): 111-124, 2019 Feb 20.
Article in Chinese | MEDLINE | ID: mdl-30803942

ABSTRACT

Metabolomics uses advanced analytical chemistry techniques to comprehensively identify, quantify, and characterize a large number of small molecule metabolites in biological samples (e.g., milk, plasma, and serum). It is routinely used in biomedical, nutritional, crop and farm animal research. Metabolomic analyses in farm animals have been initiated in many non-genetic application fields. Recently, it is being increasingly used in animal breeding with the emergence of physiological genomics/genetics and refined phenotypic description. In this review, we describe the features of metabolomics platforms and approaches, and summarize the metabolomics applications in animal genetics and genomics with a focus on some key areas, such as the heritability estimates of metabolomic profiles, identification differences metabolites between lines or breeds, genome-wide association studies with metabotypes, biomarker discovery for economic traits. Moreover, we also discuss the potential applications based on current livestock metabolomics studies. The intent of this review is to provide a critical overview of the trends in the applications of metabolomics in animal breeding, aiming to provide a reference for further studies on the genetic background of the important traits of farm animals combined metabolomics with genomics.


Subject(s)
Animals, Domestic/genetics , Breeding , Genomics , Metabolomics , Animals
2.
Poult Sci ; 98(1): 430-439, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30085302

ABSTRACT

The generation of transgenic chickens is of both biomedical and agricultural significance, and recently chicken transgenesis technology has been greatly advanced. However, major issues still exist in the efficient production of transgenic chickens. This study was designed to optimize the production of enhanced green fluorescence protein (EGFP)-transgenic broilers, including egg windowing at the blunt end (air cell) of egg, and the direct transfection of circulating primordial germ cells by microinjection of the Tol2 plasmid-liposome complex into the early embryonic dorsal aorta. For egg windowing, we discovered that proper manipulation of the inner shell membrane at the blunt end could improve the rate of producing G0 transgenic roosters. From 27 G0 roosters, we successfully collected semen with EGFP-positive sperms from 16 and 19 roosters after direct fluorescence observation and fluorescence-activated cell sorting analyses (13 detected by both methods), respectively. After artificial insemination using the G0 rooster with the highest number of EGFP fluorescent sperm, one G1 EGFP transgenic broiler (1/81, 1.23%) was generated. Our results indicate that appropriate egg windowing and screening of potentially transgene-positive roosters can improve the production of germline-transmitted transgenic birds.


Subject(s)
Animals, Genetically Modified , Chickens/genetics , Gene Transfer Techniques/veterinary , Transfection/veterinary , Animals , Embryo, Nonmammalian , Female , Genetic Vectors , Green Fluorescent Proteins/genetics , Insemination, Artificial/veterinary , Male , Transfection/methods , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL