Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38888891

ABSTRACT

The utilization of long-chain fluorocarbon surfactants is restricted due to environmental regulations, prompting a shift in the focus of research towards short-chain fluorocarbon surfactants. The present study employs molecular dynamics techniques to model the behaviour of potassium perfluorobutylsulfonate (PFBS) at the n-hexane/water interface, aiming to investigate the efficacy of short-chain fluorocarbon surfactants in enhancing oil recovery. The findings suggest that ionized PFBS- has the ability to autonomously migrate to the oil/water interface, forming a layered thin film, with the sulfonic acid group being submerged in water, while the fluorocarbon chain is oriented towards the oil phase. This phenomenon aligns with the fundamental concept of surfactants in reducing interfacial tension between oil and water. The spontaneous dispersion process is supported by changes in the number of water molecules surrounding each PFBS- anion, as is well indicated by the number density distribution within the simulation box. Based on the analysis conducted by IGMH (Independent Gradient Model based on Hirshfeld partition), it was determined that sulfonic acid molecules are capable of forming hydrogen bonds with water molecules, whereas the interaction between fluorocarbon chains and the oil phase is predominantly characterized by weak van der Waals interactions.

2.
BMC Chem ; 18(1): 86, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678235

ABSTRACT

As a solid energy source, CH4 hydrate will inevitably break down physically as the result of geological movement or exploitation. Here, the molecular dynamics method was employed to simulate the uniaxial-deformation behavior of structure I (sI type) CH4 hydrate under stress. The stress increases regardless of whether the hydrate is stretched or squeezed, and other physical parameters also changed, such as hydrate cage numbers, order parameters, and the number of water molecules. A noticeable difference is observed between the two systems. Upon stretching, the stress immediately recovers to 0 GPa once the hydrate is completely stretched apart. During the squeeze process, the stress is ultimately not zero since solid and liquid are always in contact. When the hydrate is stretched apart, about 5% of water molecules change from solid to liquid, about 7.8% of CH4 molecules lose their shelter and become free due to the disintegration of water cages. While in the squeezing process, large cages (51262) are crushed more easily than small cages (512); in the end, about 93.5% of large cages and 73% of small cages are crushed, and approximately 87.5% CH4 is released from the cages. In mining CH4 hydrates, caution must be exercised, as if the hydrates break as a result of stress, a large release of CH4 may pose a security risk.

3.
Acta Crystallogr C Struct Chem ; 79(Pt 12): 513-519, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38019214

ABSTRACT

In order to investigate the viability of carbon dioxide (CO2) storage in seawater, molecular dynamics techniques were employed to study the dynamic evolution of CO2 hydrate in saline water. The simulation was conducted under specific conditions: a temperature of 275 K, a pressure of 10 MPa and a simulated marine environment achieved using a 3.4 wt% sodium chloride (NaCl) solution. The total simulation time was 1000 ns. The results of the simulation indicate that the pre-existence of CO2 hydrate crystals as seeds leads to rapid growth of CO2 hydrate. However, analysis of the F3 and F4 order parameters reveals that the hydrate does not meet the standard values of the perfect structure I (sI) type, confirming the existence of an imperfect structure during the simulation. Additionally, the changes in the number of different phase states of water molecules during the hydrate growth process shows that there are always some liquid water molecules, which means some water molecules fail to form solid water cages. Further investigation suggests that the presence of Na+ and Cl- hampers the hydrogen bonds between water molecules, resulting in incomplete cage structures. By analyzing the density variations in the system, it is observed that CO2 hydrate, with a density of around 1.133 g cm-3, forms rapidly, surpassing the average density of seawater. This density increase facilitates the efficient and swift containment of CO2 on the seabed, thereby supporting the feasibility of the CO2 storage theory.

4.
BMC Chem ; 17(1): 48, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37277851

ABSTRACT

Different from common hydrophobic associative polymers, a new hydrophobic associative polyacrylamide (HAPAM) with ultra-long side chains was synthesized and aimed to be used as drag reducer in this work. Firstly, a water-soluble hydrophobic monomer (named AT114) was obtained by alcoholysis reaction with acryloyl chloride and triton 114, then the drag reducer was obtained by radical copolymerization of AM, AMPS and AT114. The structures of AT114 and drag reducer were characterized by IR and NMR. Slick water was obtained by dissolving a small amount drag reducer in water. Although the viscosity of slick water varied greatly in fresh water and brine, the drag reduction rate always remained at a high level when flowing in pipelines. When the concentration of the drag reducer was 0.03% in fresh water, drag reduction rate can be up to 76.7%, while in high concentration brine, still as high as 76.2%. It shows that salt has no obvious negative impact on the drag reduction rate. That is also to say, in the case of low viscosity, the viscosity change has no obvious impact on drag reduction rate. From the Cryo-TEM observation, it can be concluded that the drag reducer forms sparse network structures in water, which is the direct reason for drag reducing effect. This finding provides knowledge regarding the development of new drag reducers.

SELECTION OF CITATIONS
SEARCH DETAIL
...