Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Neuropharmacol ; 21(8): 1806-1826, 2023.
Article in English | MEDLINE | ID: mdl-35193486

ABSTRACT

Nondopaminergic neurotransmitters such as adenosine, norepinephrine, serotonin, glutamate, and acetylcholine are all involved in Parkinson's disease (PD) and promote its symptoms. Therefore, nondopaminergic receptors are key targets for developing novel preparations for the management of motor and non-motor symptoms in PD, without the potential adverse events of dopamine replacement therapy. We reviewed English-written articles and ongoing clinical trials of nondopaminergic treatments for PD patients till 2014 to summarize the recent findings on nondopaminergic preparations for the treatment of PD patients. The most promising research area of nondopaminergic targets is to reduce motor complications caused by traditional dopamine replacement therapy, including motor fluctuations and levodopa-induced dyskinesia. Istradefylline, Safinamide, and Zonisamide were licensed for the management of motor fluctuations in PD patients, while novel serotonergic and glutamatergic agents to improve motor fluctuations are still under research. Sustained- release agents of Amantadine were approved for treating levodopa induced dyskinesia (LID), and serotonin 5HT1B receptor agonist also showed clinical benefits to LID. Nondopaminergic targets were also being explored for the treatment of non-motor symptoms of PD. Pimavanserin was approved globally for the management of hallucinations and delusions related to PD psychosis. Istradefylline revealed beneficial effect on daytime sleepiness, apathy, depression, and lower urinary tract symptoms in PD subjects. Droxidopa may benefit orthostatic hypotension in PD patients. Safinamide and Zonisamide also showed clinical efficacy on certain non-motor symptoms of PD patients. Nondopaminergic drugs are not expected to replace dopaminergic strategies, but further development of these drugs may lead to new approaches with positive clinical implications.


Subject(s)
Dyskinesias , Parkinson Disease , Humans , Antiparkinson Agents/therapeutic use , Antiparkinson Agents/pharmacology , Dopamine , Dyskinesias/drug therapy , Levodopa/adverse effects , Parkinson Disease/complications , Parkinson Disease/drug therapy , Serotonin/therapeutic use , Zonisamide/therapeutic use
2.
Parkinsonism Relat Disord ; 106: 105234, 2023 01.
Article in English | MEDLINE | ID: mdl-36481719

ABSTRACT

BACKGROUND: The bi-tensor free water imaging may provide more specific information in detecting microstructural brain tissue alterations than conventional single tensor diffusion tensor imaging. The study aimed to investigate microstructural changes in deep gray matter (DGM) nuclei of Wilson's disease (WD) using a bi-tensor free water imaging and whether the findings correlate with the neurological impairment in WD patients. METHODS: The study included 29 WD patients and 25 controls. Free water and free water corrected fractional anisotropy (FAT) in DGM nuclei of WD patients were calculated. The correlations of free water and FAT with the Unified WD Rating Scale (UWDRS) neurological subscale of WD patients were performed. RESULTS: Free water and FAT values were significantly increased in multiple DGM nuclei of neurological WD patients compared to controls. WD patients with normal appearing on conventional MRI also had significantly higher free water and FAT values in multiple DGM nuclei than controls. Positive correlations were noted between the UWDRS neurological subscores and free water values of the putamen and pontine tegmentum as well as FAT values of the dentate nucleus, red nucleus, and globus pallidus. In addition, the measured free water and FAT values of specific structures also showed a positive correlation with specific clinical symptoms in neurological WD patients, such as dysarthria, parkinsonian signs, tremor, dystonia, and ataxia. CONCLUSIONS: Free water imaging detects microstructural changes in both normal and abnormal appearing DGM nuclei of WD patients. Free water imaging indices were correlated with the severity of neurological impairment in WD patients.


Subject(s)
Hepatolenticular Degeneration , Humans , Hepatolenticular Degeneration/diagnostic imaging , Cross-Sectional Studies , Diffusion Tensor Imaging , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Biomarkers , Water
3.
Curr Neuropharmacol ; 21(5): 1224-1240, 2023.
Article in English | MEDLINE | ID: mdl-36111769

ABSTRACT

Dopamine (DA) agonists, as an excellent dopamine replacement therapy for patients with early and advanced Parkinson's disease (PD), play a vital role in controlling motor and several nonmotor symptoms. Besides, the application of DA agonists may delay levodopa therapy and the associated risk of motor complications. Indeed, each DA agonist has unique pharmacokinetic and pharmacodynamic characteristics and therefore has different therapeutic efficacy and safety profile. The comorbidities, significant non-motor manifestations, concomitant medications, and clinical features of PD individuals should guide the selection of a specific DA agonist to provide a more patient-tailored treatment option. Thorough knowledge of DA agonists helps clinicians better balance clinical efficacy and side effects. Therefore, this review refers to recent English-written articles on DA agonist therapy for PD patients and summarizes the latest findings on non-ergot DA agonists as well as the advantages and disadvantages of each compound to help clinicians in the selection of a specific DA agonist. In addition, novel D1/D5 partial agonists and new formulations of DA agonists are also discussed.


Subject(s)
Dopamine Agonists , Parkinson Disease , Humans , Dopamine Agonists/therapeutic use , Parkinson Disease/drug therapy , Parkinson Disease/complications , Antiparkinson Agents/therapeutic use , Antiparkinson Agents/pharmacology , Dopamine , Levodopa/therapeutic use
4.
Front Neurosci ; 16: 794375, 2022.
Article in English | MEDLINE | ID: mdl-35720701

ABSTRACT

Background: Histopathological studies in Wilson's disease (WD) have revealed increased copper and iron concentrations in the deep gray matter nuclei. However, the commonly used mean bulk susceptibility only reflects the regional metal concentration rather than the total metal content, and regional atrophy may affect the assessment of mean bulk susceptibility. Our study aimed to quantitatively assess the changes of metal concentration and total metal content in deep gray matter nuclei by quantitative susceptibility mapping to distinguish patients with neurological and hepatic WD from healthy controls. Methods: Quantitative susceptibility maps were obtained from 20 patients with neurological WD, 10 patients with hepatic WD, and 25 healthy controls on a 3T magnetic resonance imaging system. Mean bulk susceptibility, volumes, and total susceptibility of deep gray matter nuclei in different groups were compared using a linear regression model. The area under the curve (AUC) was calculated by receiver characteristic curve to analyze the diagnostic capability of mean bulk susceptibility and total susceptibility. Results: Mean bulk susceptibility and total susceptibility of multiple deep gray matter nuclei in patients with WD were higher than those in healthy controls. Compared with patients with hepatic WD, patients with neurological WD had higher mean bulk susceptibility but similar total susceptibility in the head of the caudate nuclei, globus pallidus, and putamen. Mean bulk susceptibility of putamen demonstrated the best diagnostic capability for patients with neurological WD, the AUC was 1, and the sensitivity and specificity were all equal to 1. Total susceptibility of pontine tegmentum was most significant for the diagnosis of patients with hepatic WD, the AUC was 0.848, and the sensitivity and specificity were 0.7 and 0.96, respectively. Conclusion: Brain atrophy may affect the assessment of mean bulk susceptibility in the deep gray matter nuclei of patients with WD, and total susceptibility should be an additional metric for total metal content assessment. Mean bulk susceptibility and total susceptibility of deep gray matter nuclei may be helpful for the early diagnosis of WD.

SELECTION OF CITATIONS
SEARCH DETAIL
...