Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Chemosphere ; 319: 137961, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36738940

ABSTRACT

Low average current efficiency (ACE) and high energy consumption (EC) have seriously hindered the industrial development of electrocatalytic oxidation (ECO) technology. Timely adjustment of the current output according to the attenuation law of the organic pollutants concentration during the reaction process can help to solve the low electrical energy utilization problem at source. In this study, a non-traditional power supply mode with "constant current-exponential attenuation" (Mode CC-EA) was proposed and applied to intermittent ECO systems. The current is first output in a constant state and then attenuated exponentially according to the decreasing law of pollutants concentration, enabling efficient use of electrons at all stages of the reaction, resulting in increased degradation rates and ACE, and reduced EC. Acidic red G (ARG) was used as the target pollutant and the degradation effects of the traditional constant current mode (Mode CC), the direct exponential attenuation mode (Mode EA) and the Mode CC-EA were compared with different evaluation parameters. The results showed that the optimized Mode EA (n4) and Mode CC-EA (70-n11) degraded ARG with an ACE of 5.28 and 6.09%, respectively, which were 1.26 and 1.45 times higher than Mode CC (4.2%). At the same time, the EC were 0.36 and 0.27 kWh gCOD-1, respectively, which were 12.2 and 34.2% lower than Mode CC (0.41 kWh gCOD-1). The parameters of Mode CC-EA were further optimized and used for the degradation of three typical dye wastewaters, crystal violet (CV), methylene blue (MB) and methyl orange (MO), to investigate their general applicability. The results showed that the optimized Mode CC-EA achieved higher decolorization rates, chemical oxygen demand (COD) and total organic carbon (TOC) removal rates for the four wastewaters, including ARG, than Mode CC within 120 min for the same total input charge. The ACE of Mode CC-EA was on average 1.3 times higher than that of Mode CC, while the EC was on average 25.3% lower. Mode CC-EA achieves efficient use of electrical energy while ensuring the catalytic effect, which is of great application for the efficient treatment of dye wastewater and significance for the industrial development of ECO technology.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Wastewater , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Electricity , Oxidation-Reduction , Electrodes
2.
J Environ Manage ; 330: 117148, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36584458

ABSTRACT

Bioremediation techniques utilizing sulfate-reducing bacteria (SRB) for acid mine drainage (AMD) treatment have attracted growing attention in recent years, yet substrate bioavailability for SRB is a key factor influencing treatment effectiveness and long-term stability. This study investigated the effects of external organic substrates, including four complex organic wastes (i.e., sugarcane bagasse, straw compost, shrimp shell (SS), and crab shell (CS)) and a small-molecule organic acid (i.e., propionate), on AMD removal performance and associated microbial communities during the 30-day operation of sulfate-reducing microcosms. The results showed that the pH values increased in all five microcosms, while CS exhibited the highest neutralization ability and a maximum alkalinity generation of 1507 mg/L (as CaCO3). Sulfate reduction was more effective in SS and CS microcosms, with sulfate removal efficiencies of 95.6% and 86.0%, respectively. All sulfate-reducing microcosms could remove heavy metals to different degrees, with the highest removal rate of >99.0% observed for aluminum. The removal efficiency of manganese, the most recalcitrant metal, was the highest (96%) in the CS microcosm. Correspondingly, SRB was more abundant in the CS and SS microcosms as revealed by sequencing analysis, while Desulfotomaculum was the dominant SRB in the CS microcosm, accounting for 10.8% of total effective bacterial sequences. Higher abundances of functional genes involved in fermentation and sulfur cycle were identified in CS and SS microcosms. This study suggests that complex organic wastes such as CS and SS could create and maintain preferable micro-environments for active growth and metabolism of functional microorganisms, thus offering a cost-efficient, stable, and environmental-friendly solution for AMD treatment and management.


Subject(s)
Desulfovibrio , Metals, Heavy , Microbiota , Saccharum , Cellulose , Sulfates/chemistry , Metals, Heavy/chemistry , Acids , Desulfovibrio/metabolism , Bioreactors/microbiology
3.
Water Res ; 45(3): 1177-88, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21146845

ABSTRACT

Adsorptive properties for Cu (II), Pb (II) and Cd (II) onto an iminodiacetic acid (IDA) chelating resin were systematically investigated at the optimal pH-value in both single and binary solutions using batch experiments. The Langmuir isotherm model and the pseudo second-order rate equation could explain respectively the isotherm and kinetic experimental data for sole-component system with much satisfaction. The maximum adsorption capacity in single system for Cu (II), Pb (II) and Cd (II) was calculated to be 2.27 mmol/g, 1.27 mmol/g and 0.65 mmol/g individually. The initial adsorption rate followed the order as Cu (II)>Pb (II)>Cd (II) at the fixed initial concentration, and for each metal the initial sorption rate increased as the initial concentration increased. In addition, the modified Langmuir model could describe the binary competitive adsorption behavior successfully, with which the interaction coefficient was obtained to follow the order as Cu (II)

Subject(s)
Cations, Divalent/chemistry , Chelating Agents/chemistry , Adsorption , Cadmium/chemistry , Copper/chemistry , Imino Acids/chemistry , Kinetics , Lead/chemistry , Models, Theoretical
4.
Talanta ; 81(1-2): 424-32, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20188941

ABSTRACT

The adsorption performances, under static as well as dynamic conditions, for such metal ions as Cu(II), Pb(II) and Cd(II) toward chelating resins (IRC748 and NDC702) similarly containing iminodiacetic acid group but diverse pore structures, are systematically performed and deeply exploited. The physicochemical characteristics of both IDA-chelating resins are thoroughly explored by EA, FT-IR, SEM-EDX and PSD. Langmuir isotherm and pseudo-second-order equation could satisfactorily describe the batch experimental data, based on which the equilibrium and kinetic parameters are calculated and compared. The adsorption capacities follow the order of Cu(II)>Pb(II)>Cd(II), due to the complicated impacts of metal ion electronegativity as well as resin pore textures. In the contrast of single and binary adsorption performances, more reduction of Cd(II) than Cu(II) is expectably investigated with the coexistence of competitive ion since the less affinity and hence weak competition of the former onto solid-phase. Using aqueous solution of 15 wt% HCl, nearly 100% recovery of Cu(II) and Cd(II) from IDA-resins could be strictly achieved in the column-tests. Furthermore, a schematic illustration of possible pore structure has been proposed and simulated. Meanwhile, the interaction mechanisms are thereby deduced and evidently confirmed by FT-IR as well as SEM analysis.

5.
J Hazard Mater ; 167(1-3): 589-96, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19264406

ABSTRACT

N,N'-di (carboxymethyl) dithiocarbamate chelating resin (PSDC) was synthesized by anchoring the chelating agent of N,N'-di (carboxymethyl) dithiocarbamate to the chloromethylated PS-DVB (Cl-PS-DVB) matrix, as a new adsorbent for removing divalent heavy metal ions from waste-stream. The physicochemical structures of Cl-PS-DVB and PSDC were elaborately characterized using Fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA), and were further morphologically characterized using BET and BJH methods. The adsorption performances of PSDC towards heavy metals such as Cu(II), Pb(II) and Ni(II) were systematically investigated, based upon which the adsorption mechanisms were deeply exploited. For the above target, the classic batch adsorption experiments were conducted to explore the kinetics and isotherms of the removal processes with pH-value, initial concentration, temperature, and contact time as the controlling parameters. The kinetic and isotherm data could be well elucidated with Lagergren-second-order equation and Langmuir model respectively. The strong affinity of PSDC toward these target soft acids could be well demonstrated with the electrostatic attraction and chelating interaction caused by IDA moiety and sulphur which were namely soft bases on the concept of hard and soft acids and bases (HASB). Thermodynamic parameters, involving DeltaH(o), DeltaS(o) and DeltaG(o) were also calculated from graphical interpretation of the experimental data. The standard heats of adsorption (DeltaH(o)) were found to be endothermic and the entropy change values (DeltaS(o)) were calculated to be positive for the adsorption of Cu(II), Pb(II) and Ni(II) ions onto the tested adsorbents. Negative values of DeltaG(o) indicated that adsorption processes for all tested metal ions onto PSDC were spontaneous.


Subject(s)
Cations, Divalent/isolation & purification , Dimethyldithiocarbamate/analogs & derivatives , Metals, Heavy/isolation & purification , Water Purification/methods , Adsorption , Chelating Agents/chemistry , Dimethyldithiocarbamate/chemistry , Hydrogen-Ion Concentration , Kinetics , Resins, Synthetic/chemistry , Temperature , Thermodynamics , Water Pollutants/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL