Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Front Neurosci ; 18: 1362239, 2024.
Article in English | MEDLINE | ID: mdl-38699678

ABSTRACT

Introduction: Aging is a complex, time-dependent biological process that involves a decline of overall function. Over the past decade, the field of intestinal microbiota associated with aging has received considerable attention. However, there is limited information surrounding microbiota-gut-brain axis (MGBA) to further reveal the mechanism of aging. Methods: In this study, locomotory function and sensory function were evaluated through a series of behavioral tests.Metabolic profiling were determined by using indirect calorimetry.16s rRNA sequence and targeted metabolomics analyses were performed to investigate alterations in the gut microbiota and fecal short-chain fatty acids (SCFAs). The serum cytokines were detected by a multiplex cytokine assay.The expression of proinflammatory factors were detected by western blotting. Results: Decreased locomotor activity, decreased pain sensitivity, and reduced respiratory metabolic profiling were observed in aged mice. High-throughput sequencing revealed that the levels of genus Lactobacillus and Dubosiella were reduced, and the levels of genus Alistipes and Bacteroides were increased in aged mice. Certain bacterial genus were directly associated with the decline of physiological behaviors in aged mice. Furthermore, the amount of fecal SCFAs in aged mice was decreased, accompanied by an upregulation in the circulating pro-inflammatory cytokines and increased expression of inflammatory factors in the brain. Discussion: Aging-induced microbial dysbiosis was closely related with the overall decline in behavior, which may attribute to the changes in metabolic products, e.g., SCFAs, caused by an alteration in the gut microbiota, leading to inflammaging and contributing to neurological deficits. Investigating the MGBA might provide a novel viewpoint to exploring the pathogenesis of aging and expanding appropriate therapeutic targets.

2.
Curr Issues Mol Biol ; 46(2): 1291-1307, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38392200

ABSTRACT

Changes in intracellular nicotinamide adenine dinucleotide (NAD+) levels have been observed in various disease states. A decrease in NAD+ levels has been noted following spinal cord injury (SCI). Nicotinamide riboside (NR) serves as the precursor of NAD+. Previous research has demonstrated the anti-inflammatory and apoptosis-reducing effects of NR supplements. However, it remains unclear whether NR exerts a similar role in mice after SCI. The objective of this study was to investigate the impact of NR on these changes in a mouse model of SCI. Four groups were considered: (1) non-SCI without NR (Sham), (2) non-SCI with NR (Sham +NR), (3) SCI without NR (SCI), and (4) SCI with NR (SCI + NR). Female C57BL/6J mice aged 6-8 weeks were intraperitoneally administered with 500 mg/kg/day NR for a duration of one week. The supplementation of NR resulted in a significant elevation of NAD+ levels in the spinal cord tissue of mice after SCI. In comparison to the SCI group, NR supplementation exhibited regulatory effects on the chemotaxis/recruitment of leukocytes, leading to reduced levels of inflammatory factors such as IL-1ß, TNF-α, and IL-22 in the injured area. Moreover, NR supplementation notably enhanced the survival of neurons and synapses within the injured area, ultimately resulting in improved motor functions after SCI. Therefore, our research findings demonstrated that NR supplementation had inhibitory effects on leukocyte chemotaxis, anti-inflammatory effects, and could significantly improve the immune micro-environment after SCI, thereby promoting neuronal survival and ultimately enhancing the recovery of motor functions after SCI. NR supplementation showed promise as a potential clinical treatment strategy for SCI.

3.
NPJ Biofilms Microbiomes ; 9(1): 99, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38092763

ABSTRACT

Spinal cord injury (SCI) can reshape gut microbial composition, significantly affecting clinical outcomes in SCI patients. However, mechanisms regarding gut-brain interactions and their clinical implications have not been elucidated. We hypothesized that short-chain fatty acids (SCFAs), intestinal microbial bioactive metabolites, may significantly affect the gut-brain axis and enhance functional recovery in a mouse model of SCI. We enrolled 59 SCI patients and 27 healthy control subjects and collected samples. Thereafter, gut microbiota and SCFAs were analyzed using 16 S rDNA sequencing and gas chromatography-mass spectrometry, respectively. We observed an increase in Actinobacteriota abundance and a decrease in Firmicutes abundance. Particularly, the SCFA-producing genera, such as Faecalibacterium, Megamonas, and Agathobacter were significantly downregulated among SCI patients compared to healthy controls. Moreover, SCI induced downregulation of acetic acid (AA), propionic acid (PA), and butyric acid (BA) in the SCI group. Fecal SCFA contents were altered in SCI patients with different injury course and injury segments. Main SCFAs (AA, BA, and PA) were administered in combination to treat SCI mice. SCFA supplementation significantly improved locomotor recovery in SCI mice, enhanced neuronal survival, promoted axonal formation, reduced astrogliosis, and suppressed microglial activation. Furthermore, SCFA supplementation downregulated NF-κB signaling while upregulating neurotrophin-3 expression following SCI. Microbial sequencing and metabolomics analysis showed that SCI patients exhibited a lower level of certain SCFAs and related bacterial strains than healthy controls. SCFA supplementation can reduce inflammation and enhance nourishing elements, facilitating the restoration of neurological tissues and the improvement of functional recuperation. Trial registration: This study was registered in the China Clinical Trial Registry ( www.chictr.org.cn ) on February 13, 2017 (ChiCTR-RPC-17010621).


Subject(s)
Dysbiosis , Spinal Cord Injuries , Humans , Mice , Animals , Dysbiosis/microbiology , Fatty Acids, Volatile , Acetic Acid/metabolism , Bacteria/genetics , Bacteria/metabolism , Butyric Acid/metabolism
4.
Inflammation ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37975960

ABSTRACT

Oxidative stress is a frequently occurring pathophysiological feature of spinal cord injury (SCI) and can result in secondary injury to the spinal cord and skeletal muscle atrophy. Studies have reported that glycine and N-acetylcysteine (GlyNAC) have anti-aging and anti-oxidative stress properties; however, to date, no study has assessed the effect of GlyNAC in the treatment of SCI. In the present work, we established a rat model of SCI and then administered GlyNAC to the animals by gavage at a dose of 200 mg/kg for four consecutive weeks. The BBB scores of the rats were significantly elevated from the first to the eighth week after GlyNAC intervention, suggesting that GlyNAC promoted the recovery of motor function; it also promoted the significant recovery of body weight of the rats. Meanwhile, the 4-week heat pain results also suggested that GlyNAC intervention could promote the recovery of sensory function in rats to some extent. Additionally, after 4 weeks, the levels of glutathione and superoxide dismutase in spinal cord tissues were significantly elevated, whereas that of malondialdehyde was significantly decreased in GlyNAC-treated animals. The gastrocnemius wet weight ratio and total antioxidant capacity were also significantly increased. After 8 weeks, the malondialdehyde level had decreased significantly in spinal cord tissue, while reactive oxygen species accumulation in skeletal muscle had decreased. These findings suggested that GlyNAC can protect spinal cord tissue, delay skeletal muscle atrophy, and promote functional recovery in rats after SCI.

5.
Nutrients ; 15(21)2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37960231

ABSTRACT

Skeletal muscle atrophy is a frequent complication after spinal cord injury (SCI) and can influence the recovery of motor function and metabolism in affected patients. Delaying skeletal muscle atrophy can promote functional recovery in SCI rats. In the present study, we investigated whether a combination of body weight support treadmill training (BWSTT) and glycine and N-acetylcysteine (GlyNAC) could exert neuroprotective effects, promote motor function recovery, and delay skeletal muscle atrophy in rats with SCI, and we assessed the therapeutic effects of the double intervention from both a structural and functional viewpoint. We found that, after SCI, rats given GlyNAC alone showed an improvement in Basso-Beattie-Bresnahan (BBB) scores, gait symmetry, and results in the open field test, indicative of improved motor function, while GlyNAC combined with BWSTT was more effective than either treatment alone at ameliorating voluntary motor function in injured rats. Meanwhile, the results of the skeletal muscle myofiber cross-sectional area (CSA), hindlimb grip strength, and acetylcholinesterase (AChE) immunostaining analysis demonstrated that GlyNAC improved the structure and function of the skeletal muscle in rats with SCI and delayed the atrophication of skeletal muscle.


Subject(s)
Acetylcysteine , Spinal Cord Injuries , Humans , Rats , Animals , Acetylcysteine/metabolism , Rats, Sprague-Dawley , Acetylcholinesterase/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/drug therapy , Muscular Atrophy/etiology , Muscular Atrophy/metabolism , Body Weight , Recovery of Function/physiology
6.
Front Nutr ; 10: 1099143, 2023.
Article in English | MEDLINE | ID: mdl-36937344

ABSTRACT

Spinal cord injury leads to loss of innervation of skeletal muscle, decreased motor function, and significantly reduced load on skeletal muscle, resulting in atrophy. Factors such as braking, hormone level fluctuation, inflammation, and oxidative stress damage accelerate skeletal muscle atrophy. The atrophy process can result in skeletal muscle cell apoptosis, protein degradation, fat deposition, and other pathophysiological changes. Skeletal muscle atrophy not only hinders the recovery of motor function but is also closely related to many systemic dysfunctions, affecting the prognosis of patients with spinal cord injury. Extensive research on the mechanism of skeletal muscle atrophy and intervention at the molecular level has shown that inflammation and oxidative stress injury are the main mechanisms of skeletal muscle atrophy after spinal cord injury and that multiple pathways are involved. These may become targets of future clinical intervention. However, most of the experimental studies are still at the basic research stage and still have some limitations in clinical application, and most of the clinical treatments are focused on rehabilitation training, so how to develop more efficient interventions in clinical treatment still needs to be further explored. Therefore, this review focuses mainly on the mechanisms of skeletal muscle atrophy after spinal cord injury and summarizes the cytokines and signaling pathways associated with skeletal muscle atrophy in recent studies, hoping to provide new therapeutic ideas for future clinical work.

7.
Front Mol Neurosci ; 16: 1099256, 2023.
Article in English | MEDLINE | ID: mdl-36818651

ABSTRACT

Spinal cord injury (SCI) is a global medical problem with high disability and mortality rates. At present, the diagnosis and treatment of SCI are still lacking. Spinal cord injury has a complex etiology, lack of diagnostic methods, poor treatment effect and other problems, which lead to the difficulty of spinal cord regeneration and repair, and poor functional recovery. Recent studies have shown that gene expression plays an important role in the regulation of SCI repair. MicroRNAs (miRNAs) are non-coding RNA molecules that target mRNA expression in order to silence, translate, or interfere with protein synthesis. Secondary damage, such as oxidative stress, apoptosis, autophagy, and inflammation, occurs after SCI, and differentially expressed miRNAs contribute to these events. This article reviews the pathophysiological mechanism of miRNAs in secondary injury after SCI, focusing on the mechanism of miRNAs in secondary neuroinflammation after SCI, so as to provide new ideas and basis for the clinical diagnosis and treatment of miRNAs in SCI. The mechanisms of miRNAs in neurological diseases may also make them potential biomarkers and therapeutic targets for spinal cord injuries.

8.
Microbiol Spectr ; 10(3): e0017722, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35467388

ABSTRACT

The primary traumatic event that causes spinal cord injury (SCI) is followed by a progressive secondary injury featured by vascular disruption and ischemia, inflammatory responses and the release of cytotoxic debris, which collectively add to the hostile microenvironment of the lesioned cord and inhibit tissue regeneration and functional recovery. In a previous study, we reported that fecal microbiota transplantation (FMT) promotes functional recovery in a contusion SCI mouse model; yet whether and how FMT treatment may impact the microenvironment at the injury site are not well known. In the current study, we examined individual niche components and investigated the effects of FMT on microcirculation, inflammation and trophic factor secretion in the spinal cord of SCI mice. FMT treatment significantly improved spinal cord tissue sparing, vascular perfusion and pericyte coverage and blood-spinal cord-barrier (BSCB) integrity, suppressed the activation of microglia and astrocytes, and enhanced the secretion of neurotrophic factors. Suppression of inflammation and upregulation of trophic factors, jointly, may rebalance the niche homeostasis at the injury site and render it favorable for reparative and regenerative processes, eventually leading to functional recovery. Furthermore, microbiota metabolic profiling revealed that amino acids including ß-alanine constituted a major part of the differentially detected metabolites between the groups. Supplementation of ß-alanine in SCI mice reduced BSCB permeability and increased the number of surviving neurons, suggesting that ß-alanine may be one of the mediators of FMT that participates in the modulation and rebalancing of the microenvironment at the injured spinal cord. IMPORTANCE FMT treatment shows a profound impact on the microenvironment that involves microcirculation, blood-spinal cord-barrier, activation of immune cells, and secretion of neurotrophic factors. Analysis of metabolic profiles reveals around 22 differentially detected metabolites between the groups, and ß-alanine was further chosen for functional validation experiments. Supplementation of SCI mice with ß-alanine significantly improves neuronal survival, and the integrity of blood-spinal cord-barrier at the lesion site, suggesting that ß-alanine might be one of the mediators following FMT that has contributed to the recovery.


Subject(s)
Neuroprotective Agents , Spinal Cord Injuries , Animals , Disease Models, Animal , Fecal Microbiota Transplantation , Inflammation/pathology , Mice , Nerve Growth Factors , Neuroprotective Agents/pharmacology , Rats , Rats, Sprague-Dawley , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Spinal Cord Injuries/therapy , beta-Alanine
9.
Front Neurosci ; 16: 1065897, 2022.
Article in English | MEDLINE | ID: mdl-36590290

ABSTRACT

Introduction: Spinal cord injury (SCI) often causes continuous neurological damage to clinical patients. Circular RNAs (circRNAs) are related to a lot of diseases, including SCI. We previously found five candidate circRNAs which were likely to regulate the secondary pathophysiological changes in rat model after traumatic SCI. Methods: In this study, we first selected and overexpressed target circRNA in rats. We then explored its functional roles using various functional assays in a rat model after SCI. Results: We found that rno-circRNA-013017-the selected target circRNA-reduced neuron apoptosis, preserved the survival and activity of motor neurons, and regulated apoptosis-related proteins at 3 days post-SCI using western blot, immunofluorescence and polymerase chain reaction. Additionally, we found that rno-circRNA-013017 inhibited descending axonal degeneration and preserved motor neurons and descending axons at 6 weeks post-SCI using immunofluorescence, biotin dextran amine diffusion tensor imaging. Finally, the overexpression of rno-circRNA-013017 promoted the locomotor function of rats after SCI using open-field test and gait analysis. Conclusion: Focusing on the functions of rno-circRNA-013017, this study provides new options for future studies exploring therapeutic targets and molecular mechanisms for SCI.

10.
Front Pharmacol ; 13: 1078761, 2022.
Article in English | MEDLINE | ID: mdl-36703756

ABSTRACT

Background: Induced pluripotent stem cells-derived exosomes (iPSCs-Exo) can effectively treat spinal cord injury (SCI) in mice. But the role of iPSCs-Exo in SCI mice and its molecular mechanisms remain unclear. This research intended to study the effects and molecular mechanism of iPSCs-Exo in SCI mice models. Methods: The feature of iPSCs-Exo was determined by transmission electron microscope (TEM), nanoparticle tracking analysis (NTA), and western blot. The effects of iPSCs-Exo in the SCI mice model were evaluated by Basso Mouse Scale (BMS) scores and H&E staining. The roles of iPSCs-Exo and miR-199b-5p in LPS-treated BMDM were verified by immunofluorescence, RT-qPCR, and Cytokine assays. The target genes of miR-199b-5p were identified, and the function of miR-199b-5p and its target genes on LPS-treated BMDM was explored by recuse experiment. Results: iPSCs-Exo improved motor function in SCI mice model in vivo, shifted the polarization from M1 macrophage to M2 phenotype, and regulated related inflammatory factors expression to accelerate the SCI recovery in LPS-treated BMDM in vitro. Meanwhile, miR-199b-5p was a functional player of iPSCs-Exo, which could target hepatocyte growth factor (Hgf). Moreover, miR-199b-5p overexpression polarized M1 macrophage into M2 phenotype and promoted neural regeneration in SCI. The rescue experiments confirmed that miR-199b-5p induced macrophage polarization and SCI recovery by regulating Hgf and Phosphoinositide 3-kinase (PI3K) signaling pathways. Conclusion: The miR-199b-5p-bearing iPSCs-Exo might become an effective method to treat SCI.

11.
Microbiome ; 9(1): 59, 2021 03 07.
Article in English | MEDLINE | ID: mdl-33678185

ABSTRACT

BACKGROUND: Spinal cord injury (SCI) patients display disruption of gut microbiome, and gut dysbiosis exacerbate neurological impairment in SCI models. Cumulative data support an important role of gut microbiome in SCI. Here, we investigated the hypothesis that fecal microbiota transplantation (FMT) from healthy uninjured mice into SCI mice may exert a neuroprotective effect. RESULTS: FMT facilitated functional recovery, promoted neuronal axonal regeneration, improved animal weight gain and metabolic profiling, and enhanced intestinal barrier integrity and GI motility in SCI mice. High-throughput sequencing revealed that levels of phylum Firmicutes, family Christensenellaceae, and genus Butyricimonas were reduced in fecal samples of SCI mice, and FMT remarkably reshaped gut microbiome. Also, FMT-treated SCI mice showed increased amount of fecal short-chain fatty acids (SCFAs), which correlated with alteration of intestinal permeability and locomotor recovery. Furthermore, FMT downregulated IL-1ß/NF-κB signaling in spinal cord and NF-κB signaling in gut following SCI. CONCLUSION: Our study demonstrates that reprogramming of gut microbiota by FMT improves locomotor and GI functions in SCI mice, possibly through the anti-inflammatory functions of SCFAs. Video Abstract.


Subject(s)
Brain/physiology , Fecal Microbiota Transplantation , Gastrointestinal Microbiome/physiology , Neuroprotection/physiology , Spinal Cord Injuries/therapy , Animals , Fatty Acids, Volatile/metabolism , Feces/chemistry , Female , Interleukin-1beta/metabolism , Intestines/microbiology , Intestines/physiology , Locomotion , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Signal Transduction , Spinal Cord Injuries/pathology
12.
Life Sci ; 266: 118865, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33301807

ABSTRACT

After spinal cord injury (SCI), intestinal dysfunction has a serious impact on physical and mental health, quality of life, and social participation. Recent data from rodent and human studies indicated that SCI causes gut dysbiosis. Remodeling gut microbiota could be beneficial for the recovery of intestinal function and motor function after SCI. However, few studies have explored SCI with focus on the gut microbiota and "microbiota-gut-brain" axis. In this review, the complications following SCI, including intestinal dysfunction, anxiety and depression, metabolic disorders, and neuropathic pain, are directly or indirectly related to gut dysbiosis, which may be mediated by "gut-brain" interactions. Furthermore, we discuss the research strategies that can be beneficial in this regard, including germ-free animals, fecal microbiota transplantation, probiotics, phages, and brain imaging techniques. The current microbial research has shifted from descriptive to mechanismal perspective, and future research using new technologies may further demonstrate the pathophysiological mechanism of association of SCI with gut microbiota, elucidate the mode of interaction of gut microbiota and hosts, and help develop personalized microbiota-targeted therapies and drugs based on microbiota or corresponding metabolites.


Subject(s)
Gastrointestinal Microbiome , Neuroprotection , Spinal Cord Injuries/prevention & control , Animals , Humans , Spinal Cord Injuries/microbiology
13.
J Cell Mol Med ; 24(21): 12765-12776, 2020 11.
Article in English | MEDLINE | ID: mdl-32945105

ABSTRACT

Increased mechanical stress after spinal cord injury (SCI) expands the scope of nerve tissue damage and exacerbates nerve function defects. Surgical decompression after SCI is a conventional therapeutic strategy and has been proven to have neuroprotective effects. However, the mechanisms of the interaction between mechanical stress and neurons are currently unknown. In this study, we monitored intramedullary pressure (IMP) and investigated the therapeutic benefit of decompression (including durotomy and piotomy) after injury and its underlying mechanisms in SCI. We found that decreased IMP promotes the generation and degradation of LC3 II, promotes the degradation of p62 and enhances autophagic flux to alleviate apoptosis. The lysosomal dysfunction was reduced after decompression. Piotomy was better than durotomy for the histological repair of spinal cord tissue after SCI. However, the autophagy-lysosomal pathway inhibitor chloroquine (CQ) partially reversed the apoptosis inhibition caused by piotomy after SCI, and the structural damage was also aggravated after CQ administration. An antibody microarray analysis showed that decompression may reverse the up-regulated abundance of p-PI3K, p-AKT and p-mTOR caused by SCI. Our findings may contribute to a better understanding of the mechanism of decompression and the effects of mechanical stress on autophagy after SCI.


Subject(s)
Apoptosis , Autophagy , Spinal Cord Injuries/pathology , Stress, Mechanical , Animals , Apoptosis/drug effects , Autophagy/drug effects , Chloroquine/administration & dosage , Chloroquine/pharmacology , Decompression, Surgical , Disease Models, Animal , Female , Lysosomes/drug effects , Lysosomes/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rabbits , TOR Serine-Threonine Kinases/metabolism , Up-Regulation/drug effects
14.
Cell Death Dis ; 11(8): 694, 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32826858

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
Cell Death Dis ; 11(7): 567, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32703937

ABSTRACT

Surgical decompression after spinal cord injury (SCI) is a conventional treatment. Although it has been proven to have clinical effects, there are certain limitations, such as the surgical conditions that must be met and the invasive nature of the treatment. Therefore, there is an urgent need to develop a simple and maneuverable therapy for the emergency treatment of patients with SCI before surgery. Rapamycin (RAPA) has been reported to have potential as a therapeutic agent for SCI. In this study, we observed the therapeutic effects of rapamycin and surgical decompression, in combination or separately, on the histopathology in rabbits with SCI. After combination therapy, intramedullary pressure (IMP) decreased significantly, autophagic flux increased, and apoptosis and demyelination were significantly reduced. Compared with RAPA/surgical decompression alone, the combination therapy had a significantly better effect. In addition, we evaluated the effects of mechanical pressure on autophagy after SCI by assessing changes in autophagic initiation, degradation, and flux. Increased IMP after SCI inhibited autophagic degradation and impaired autophagic flux. Decompression improved autophagic flux after SCI. Our findings provide novel evidence of a promising strategy for the treatment of SCI in the future. The combination therapy may effectively improve emergency treatment after SCI and promote the therapeutic effect of decompression. This study also contributes to a better understanding of the effects of mechanical pressure on autophagy after neurotrauma.


Subject(s)
Decompression, Surgical , Sirolimus/therapeutic use , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/surgery , Animals , Apoptosis/drug effects , Autophagy/drug effects , Cell Count , Demyelinating Diseases/pathology , Disease Models, Animal , Female , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Rabbits , Sirolimus/pharmacology , Spinal Cord/pathology
16.
Am J Transl Res ; 11(8): 4817-4834, 2019.
Article in English | MEDLINE | ID: mdl-31497202

ABSTRACT

Neurogenic bowel dysfunction (NBD) and gut dysbiosis frequently occur in patients with traumatic cervical spinal cord injury (TCSCI). We evaluated neurogenic bowel management and changes in the gut microbiota in patients with TCSCI as well as associations between these changes and serum biomarkers. Fresh fecal and clinical data were collected from 20 male patients with TCSCI and 23 healthy males. Microbial diversity and composition were analyzed by sequencing the V3-V4 region of the 16S rRNA gene. Moderate NBD was observed in patients with TCSCI. The diversity of the gut microbiota was lower in patients with TCSCI than in healthy adults. Furthermore, patients with TCSCI showed altered levels of serum biomarkers related to lipid metabolism, indicating unfavorable lipid profiles. Interestingly, Firmicutes had a positive effect and Verrucomicrobia had a negative effect on lipid metabolism (P < 0.05). At the genus level, Bacteroides and Blautia were significantly more abundant in patients than in healthy subjects and could be associated with lipid metabolism (P < 0.05). Faecalibacterium, Megamonas, and Prevotella, which were correlated with lipid metabolism markers, may be suitable targets for the treatment of TCSCI. Lactobacillus was positively correlated with glucose levels. The dysbiosis of several key gut bacteria was associated with serum biomarkers of lipid metabolism in patients with TCSCI. The observed interdependency of the microbiota and lipid metabolism provides a basis for understanding the mechanisms underlying lipid disorders after cervical SCI.

17.
Front Neurosci ; 13: 319, 2019.
Article in English | MEDLINE | ID: mdl-31040762

ABSTRACT

Spinal cord injury (SCI) often leads to severe and permanent paralysis and places a heavy burden on individuals, families, and society. Until now, the therapy of SCI is still a big challenge for the researchers. Transplantation of mesenchymal stem cells (MSCs) is a hot spot for the treatment of SCI, but many problems and risks have not been resolved. Some studies have reported that the therapeutic effect of MSCs on SCI is related to the paracrine secretion of cells. The exosomes secreted by MSCs have therapeutic potential for many diseases. There are abundant pericytes which possess the characteristics of stem cells in the neurovascular unit. Due to the close relationship between pericytes and endothelial cells, the exosomes of pericytes can be taken up by endothelial cells more easily. There are fewer studies about the therapeutic potential of the exosomes derived from pericytes on SCI now. In this study, exosomes of pericytes were transplanted into the mice with SCI to study the restoration of motor function and explore the underlying mechanism. We found that the exosomes derived from pericytes could reduce pathological changes, improve the motor function, the blood flow and oxygen deficiency after SCI. In addition, the exosomes could improve the endothelial ability to regulate blood flow, protect the blood-spinal cord barrier, reduce edema, decrease the expression of HIF-1α, Bax, Aquaporin-4, and MMP2, increase the expression of Claudin-5, bcl-2 and inhibit apoptosis. The experiments in vitro proved that exosomes derived from pericytes could protect the barrier of spinal cord microvascular endothelial cells under hypoxia condition, which was related to PTEN/AKT pathway. In summary, our study showed that exosomes of pericytes had therapeutic prospects for SCI.

18.
Biochem Biophys Res Commun ; 514(3): 1023-1029, 2019 06 30.
Article in English | MEDLINE | ID: mdl-31068251

ABSTRACT

It has been previously reported that the blockade of interleukin-7 receptor (IL-7R) promotes functional recovery following spinal cord injury (SCI), however, the direct function and molecular mechanism of IL-7 involved in this pathogenic process are unclear. Here, we report that, contrary to IL-7R blockade, the intraspinal administration of IL-7 limits functional recovery following SCI. In addition, IL-7 treatment promotes neuronal apoptosis in spinal cord lesions, which may be attributed to exacerbated focal inflammatory response, as shown by increased accumulation of activated microglia/macrophage and production of proinflammatory mediators. Moreover, IL-7 treatment activates JAK/STAT5 pathway following SCI. At last, more importantly, the pharmacological inhibition of STAT5 abrogates the effects of IL-7 treatment on functional recovery, neuronal apoptosis and focal inflammatory response, suggesting that the effects of IL-7 treatment following SCI are dependent on activating the JAK/STAT5 pathway. Overall, this study reveals the JAK/STAT5 pathway-dependent detrimental role of IL-7 following SCI, and also implies that targeting the IL-7/JAK/STAT5 axis may represent a potential therapeutic approach for SCI treatment.


Subject(s)
Apoptosis , Interleukin-7/administration & dosage , Janus Kinases/metabolism , Recovery of Function , STAT5 Transcription Factor/metabolism , Signal Transduction , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology , Animals , Apoptosis/drug effects , Inflammation/pathology , Injections, Spinal , Interleukin-7/pharmacology , Male , Mice, Inbred C57BL , Pimozide/pharmacology , Recovery of Function/drug effects , Signal Transduction/drug effects
19.
Life Sci ; 221: 47-55, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30738044

ABSTRACT

BACKGROUND: Spinal cord injury (SCI) disturbs the autonomic nervous system and induces dysfunction or failure of multiple organs. The systemic microcirculation disturbance that contributes to the complications associated with SCI remains to be clarified. METHODS: We used male mice (29-32 g) and modified weight-drop injury at T10 to evaluate the systemic microcirculation dysfunction during the first 2 weeks after SCI. We determined permeability and microvascular blood flow in several organs and evaluated their vasomotor function. We also measured circulating endothelial cells (CECs), circulating endothelial progenitor cells (CEPCs), circulating pericyte progenitor cells (CPPCs), and serum proinflammatory cytokines. RESULTS: The endothelial permeability of almost all organs increased after SCI. Microvascular blood flow decreased in the bladder and kidney and increased in the spleen and was accompanied by endothelial vasomotor dysfunction. SCI also induced an increase in CECs, CEPCs, and CPPCs in peripheral blood. Finally, we confirmed changes in a systemic cytokine profile (interleukin [IL]-3, IL-6, IL-10, IL-13, granulocyte colony-stimulating factor, and regulated on activation normal T cell expressed and secreted) after SCI. CONCLUSIONS: These data indicate that a systemic microcirculation disturbance occurs after SCI. This information may play a key role in the development of effective therapeutic strategies for SCI.


Subject(s)
Microcirculation/physiology , Spinal Cord Injuries/blood , Animals , Cytokines , Endothelial Progenitor Cells , Male , Mice , Mice, Inbred ICR , Pericytes , Regional Blood Flow/physiology , Spinal Cord/blood supply
20.
J Neurotrauma ; 36(18): 2646-2664, 2019 09 15.
Article in English | MEDLINE | ID: mdl-30693824

ABSTRACT

Spinal cord injury (SCI) disturbs the autonomic nervous system and induces dysfunction in multiple organs/tissues, such as the gastrointestinal (GI) system. The neuroprotective effects of melatonin in SCI models have been reported; however, it is unclear whether the beneficial effects of melatonin are associated with alleviation of gut dysbiosis. In this study, we showed that daily intraperitoneal injection with melatonin following spinal cord contusion at thoracic level 10 in mice improved intestinal barrier integrity and GI motility, reduced expression levels of certain proinflammatory cytokines, improved animal weight gain and metabolic profiling, and promoted locomotor recovery. Analysis of gut microbiome revealed that melatonin treatment decreased the Shannon index and reshaped the composition of intestinal microbiota. Melatonin-treated SCI animals showed decreased relative abundance of Clostridiales and increased relative abundance of Lactobacillales and Lactobacillus, which correlated with alteration of cytokine (monocyte chemotactic protein 1) expression and GI barrier permeability, as well as with locomotor recovery. Experimental induction of gut dysbiosis in mice before SCI (i.e., by oral delivery of broad-spectrum antibiotics) exacerbates neurological impairment after SCI, and melatonin treatment improves locomotor performance and intestinal integrity in antibiotic-treated SCI mice. The results suggest that melatonin treatment restores SCI-induced alteration in gut microbiota composition, which may underlie the ameliorated GI function and behavioral manifestations.


Subject(s)
Dysbiosis/etiology , Gastrointestinal Microbiome/drug effects , Melatonin/pharmacology , Neuroprotective Agents/pharmacology , Spinal Cord Injuries/complications , Animals , Female , Mice , Mice, Inbred C57BL , Recovery of Function/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...