Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 192
Filter
2.
Int J Cardiol ; 407: 132065, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38642720

ABSTRACT

BACKGROUND: Accurate assessment and timely intervention play a crucial role in ameliorating poor short-term prognosis of acute pulmonary embolism (APE) patients. The currently employed scoring models exhibit a degree of complexity, and some models may not comprehensively incorporate relevant indicators, thereby imposing limitations on the evaluative efficacy. Our study aimed to construct and externally validate a nomogram that predicts 30-day all-cause mortality risk in APE patients. METHODS: Clinical data from APE patients in Intensive Care-IV database was included as a training cohort. Additionally, we utilized our hospital's APE database as an external validation cohort. The nomogram was developed, and its predictive ability was evaluated using receiver operating characteristic (ROC) curves, calibration plots and decision curve analysis. RESULTS: A collective of 1332 patients and 336 patients were respectively enrolled as the training cohort and the validation cohort in this study. Five variables including age, malignancy, oxygen saturation, blood glucose, and the use of vasopressor, were identified based on the results of the multivariate Cox regression model. The ROC value for the nomogram in the training cohort yielded 0.765, whereas in the validation group, it reached 0.907. Notably, these values surpassed the corresponding ROC values for the Pulmonary Embolism Severity Index, which were 0.713 in the training cohort and 0.754 in the validation cohort. CONCLUSIONS: The nomogram including five indicators had a good performance in predicting short-term prognosis in patients with APE, which was easier to apply and provided better recommendations for clinical decision-making.


Subject(s)
Nomograms , Pulmonary Embolism , Humans , Pulmonary Embolism/diagnosis , Pulmonary Embolism/mortality , Male , Female , Prognosis , Middle Aged , Aged , Acute Disease , Predictive Value of Tests , Cohort Studies , Retrospective Studies , Time Factors
3.
J Am Heart Assoc ; 13(9): e032872, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38639351

ABSTRACT

BACKGROUND: Peripheral pulmonary stenosis (PPS) is a condition characterized by the narrowing of the pulmonary arteries, which impairs blood flow to the lung. The mechanisms underlying PPS pathogenesis remain unclear. Thus, the aim of this study was to investigate the genetic background of patients with severe PPS to elucidate the pathogenesis of this condition. METHODS AND RESULTS: We performed genetic testing and functional analyses on a pediatric patient with PPS and Williams syndrome (WS), followed by genetic testing on 12 patients with WS and mild-to-severe PPS, 50 patients with WS but not PPS, and 21 patients with severe PPS but not WS. Whole-exome sequencing identified a rare PTGIS nonsense variant (p.E314X) in a patient with WS and severe PPS. Prostaglandin I2 synthase (PTGIS) expression was significantly downregulated and cell proliferation and migration rates were significantly increased in cells transfected with the PTGIS p.E314X variant-encoding construct when compared with that in cells transfected with the wild-type PTGIS-encoding construct. p.E314X reduced the tube formation ability in human pulmonary artery endothelial cells and caspase 3/7 activity in both human pulmonary artery endothelial cells and human pulmonary artery smooth muscle cells. Compared with healthy controls, patients with PPS exhibited downregulated pulmonary artery endothelial prostaglandin I2 synthase levels and urinary prostaglandin I metabolite levels. We identified another PTGIS rare splice-site variant (c.1358+2T>C) in another pediatric patient with WS and severe PPS. CONCLUSIONS: In total, 2 rare nonsense/splice-site PTGIS variants were identified in 2 pediatric patients with WS and severe PPS. PTGIS variants may be involved in PPS pathogenesis, and PTGIS represents an effective therapeutic target.


Subject(s)
Cytochrome P-450 Enzyme System , Intramolecular Oxidoreductases , Pulmonary Artery , Pulmonary Valve Stenosis , Williams Syndrome , Humans , Male , Williams Syndrome/genetics , Williams Syndrome/physiopathology , Williams Syndrome/enzymology , Female , Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/metabolism , Pulmonary Artery/physiopathology , Pulmonary Artery/enzymology , Pulmonary Valve Stenosis/genetics , Pulmonary Valve Stenosis/physiopathology , Child , Codon, Nonsense , Child, Preschool , Exome Sequencing , Severity of Illness Index , Cell Proliferation , Adolescent , Endothelial Cells/enzymology , Endothelial Cells/metabolism , Cell Movement , Genetic Predisposition to Disease , Phenotype , Cells, Cultured
4.
Pulm Circ ; 14(1): e12352, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38532768

ABSTRACT

AV-101 (imatinib) powder for inhalation, an investigational dry powder inhaled formulation of imatinib designed to target the underlying pathobiology of pulmonary arterial hypertension, was generally well tolerated in healthy adults in a phase 1 single and multiple ascending dose study. Inhaled Imatinib Pulmonary Arterial Hypertension Clinical Trial (IMPAHCT; NCT05036135) is a phase 2b/3, randomized, double-blind, placebo-controlled, dose-ranging, and confirmatory study. IMPAHCT is designed to identify an optimal AV-101 dose (phase 2b primary endpoint: pulmonary vascular resistance) and assess the efficacy (phase 3 primary endpoint: 6-min walk distance), safety, and tolerability of AV-101 dose levels in subjects with pulmonary arterial hypertension using background therapies. The study has an operationally seamless, adaptive design allowing for continuous recruitment. It includes three parts; subjects enrolled in Part 1 (phase 2b dose-response portion) or Part 2 (phase 3 intermediate portion) will be randomized 1:1:1:1 to 10, 35, 70 mg AV-101, or placebo (twice daily), respectively. Subjects enrolled in Part 3 (phase 3 optimal dose portion) will be randomized 1:1 to the optimal dose of AV-101 and placebo (twice daily), respectively. All study parts include a screening period, a 24-week treatment period, and a 30-day safety follow-up period; the total duration is ∼32 weeks. Participation is possible in only one study part. IMPAHCT has the potential to advance therapies for patients with pulmonary arterial hypertension by assessing the efficacy and safety of a novel investigational drug-device combination (AV-101) using an improved study design that has the potential to save 6-12 months of development time. ClinicalTrials.gov Identifier: NCT05036135.

5.
Eur J Pharmacol ; 970: 176492, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38503401

ABSTRACT

Pulmonary arterial hypertension (PAH) is a progressive vascular disease characterized by remodeling of the pulmonary vasculature and elevated pulmonary arterial pressure, ultimately leading to right heart failure and death. Despite its clinical significance, the precise molecular mechanisms driving PAH pathogenesis warrant confirmation. Compelling evidence indicates that during the development of PAH, pulmonary vascular cells exhibit a preference for energy generation through aerobic glycolysis, known as the "Warburg effect", even in well-oxygenated conditions. This metabolic shift results in imbalanced metabolism, increased proliferation, and severe pulmonary vascular remodeling. Exploring the Warburg effect and its interplay with glycolytic enzymes in the context of PAH has yielded current insights into emerging drug candidates targeting enzymes and intermediates involved in glucose metabolism. This sheds light on both opportunities and challenges in the realm of antiglycolytic therapy for PAH.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Humans , Pulmonary Arterial Hypertension/metabolism , Familial Primary Pulmonary Hypertension , Glycolysis , Lung/metabolism , Pulmonary Artery/metabolism , Vascular Remodeling
6.
Lancet Respir Med ; 12(4): e21-e30, 2024 04.
Article in English | MEDLINE | ID: mdl-38548406

ABSTRACT

BACKGROUND: Macitentan is beneficial for long-term treatment of pulmonary arterial hypertension. The microvasculopathy of chronic thromboembolic pulmonary hypertension (CTEPH) and pulmonary arterial hypertension are similar. METHODS: The phase 2, double-blind, randomised, placebo-controlled MERIT-1 trial assessed macitentan in 80 patients with CTEPH adjudicated as inoperable. Patients identified as WHO functional class II-IV with a pulmonary vascular resistance (PVR) of at least 400 dyn·s/cm5 and a walk distance of 150-450 m in 6 min were randomly assigned (1:1), via an interactive voice/web response system, to receive oral macitentan (10 mg once a day) or placebo. Treatment with phosphodiesterase type-5 inhibitors and oral or inhaled prostanoids was permitted for WHO functional class III/IV patients. The primary endpoint was resting PVR at week 16, expressed as percentage of PVR measured at baseline. Analyses were done in all patients who were randomly assigned to treatment; safety analyses were done in all patients who received at least one dose of the study drug. This study is registered with ClinicalTrials.gov, number NCT02021292. FINDINGS: Between April 3, 2014, and March 17, 2016, we screened 186 patients for eligibility at 48 hospitals across 20 countries. Of these, 80 patients in 36 hospitals were randomly assigned to treatment (40 patients to macitentan, 40 patients to placebo). At week 16, geometric mean PVR decreased to 71·5% of baseline in the macitentan group and to 87·6% in the placebo group (geometric means ratio 0·81, 95% CI 0·70-0·95, p=0·0098). The most common adverse events in the macitentan group were peripheral oedema (9 [23%] of 40 patients) and decreased haemoglobin (6 [15%]). INTERPRETATION: In MERIT-1, macitentan significantly improved PVR in patients with inoperable CTEPH and was well tolerated. FUNDING: Actelion Pharmaceuticals Ltd.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Pyrimidines , Humans , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/etiology , Pulmonary Arterial Hypertension/drug therapy , Treatment Outcome , Sulfonamides/therapeutic use , Familial Primary Pulmonary Hypertension , Double-Blind Method
7.
Nat Rev Dis Primers ; 10(1): 1, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38177157

ABSTRACT

Pulmonary hypertension encompasses a range of conditions directly or indirectly leading to elevated pressures within the pulmonary arteries. Five main groups of pulmonary hypertension are recognized, all defined by a mean pulmonary artery pressure of >20 mmHg: pulmonary arterial hypertension (rare), pulmonary hypertension associated with left-sided heart disease (very common), pulmonary hypertension associated with lung disease (common), pulmonary hypertension associated with pulmonary artery obstructions, usually related to thromboembolic disease (rare), and pulmonary hypertension with unclear and/or multifactorial mechanisms (rare). At least 1% of the world's population is affected, with a greater burden more likely in low-income and middle-income countries. Across all its forms, pulmonary hypertension is associated with adverse vascular remodelling with obstruction, stiffening and vasoconstriction of the pulmonary vasculature. Without proactive management this leads to hypertrophy and ultimately failure of the right ventricle, the main cause of death. In older individuals, dyspnoea is the most common symptom. Stepwise investigation precedes definitive diagnosis with right heart catheterization. Medical and surgical treatments are approved for pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. There are emerging treatments for other forms of pulmonary hypertension; but current therapy primarily targets the underlying cause. There are still major gaps in basic, clinical and translational knowledge; thus, further research, with a focus on vulnerable populations, is needed to better characterize, detect and effectively treat all forms of pulmonary hypertension.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Humans , Aged , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/epidemiology , Hypertension, Pulmonary/etiology , Pulmonary Arterial Hypertension/complications , Pulmonary Artery , Lung
10.
Hypertension ; 81(2): 372-382, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38116660

ABSTRACT

BACKGROUND: The pathogenesis of chronic thromboembolic pulmonary hypertension (CTEPH) is multifactorial and growing evidence has indicated that hematological disorders are involved. Clonal hematopoiesis of indeterminate potential (CHIP) has recently been associated with an increased risk of both hematological malignancies and cardiovascular diseases. However, the prevalence and clinical relevance of CHIP in patients with CTEPH remains unclear. METHODS: Using stepwise calling on next-generation sequencing data from 499 patients with CTEPH referred to 3 centers between October 2006 and December 2021, CHIP mutations were identified. We associated CHIP with all-cause mortality in patients with CTEPH. To provide insights into potential mechanisms, the associations between CHIP and inflammatory markers were also determined. RESULTS: In total, 47 (9.4%) patients with CTEPH carried at least 1 CHIP mutation at a variant allele frequency of ≥2%. The most common mutations were in DNMT3A, TET2, RUNX1, and ASXL1. During follow-up (mean, 55 months), deaths occurred in 22 (46.8%) and 104 (23.0%) patients in the CHIP and non-CHIP groups, respectively (P<0.001, log-rank test). The association of CHIP with mortality remained robust in the fully adjusted model (hazard ratio, 2.190 [95% CI, 1.257-3.816]; P=0.006). Moreover, patients with CHIP mutations showed higher circulating interleukin-1ß and interleukin-6 and lower interleukin-4 and IgG galactosylation levels. CONCLUSIONS: This is the first study to show that CHIP mutations occurred in 9.4% of patients with CTEPH are associated with a severe inflammatory state and confer a poorer prognosis in long-term follow-up.


Subject(s)
Cardiovascular Diseases , Hypertension, Pulmonary , Humans , Clonal Hematopoiesis , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/genetics , Hematopoiesis/genetics , Cardiovascular Diseases/genetics , Mutation
12.
Pulm Circ ; 13(4): e12317, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38144948

ABSTRACT

This manuscript on real-world evidence (RWE) in pulmonary hypertension (PH) incorporates the broad experience of members of the Pulmonary Vascular Research Institute's Innovative Drug Development Initiative Real-World Evidence Working Group. We aim to strengthen the research community's understanding of RWE in PH to facilitate clinical research advances and ultimately improve patient care. Herein, we review real-world data (RWD) sources, discuss challenges and opportunities when using RWD sources to study PH populations, and identify resources needed to support the generation of meaningful RWE for the global PH community.

13.
Res Pract Thromb Haemost ; 7(6): 102157, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37674867

ABSTRACT

Background: Various inherited traits contribute to the overall risk of venous thromboembolism (VTE). In addition, the epidemiology of thrombophilia in the East-Asian VTE population remains unclear; thus, we aimed to assess the proportion of hereditary thrombophilia via a meta-analysis. Methods: Publications from PubMed, EMBASE, web of science, and Cochrane before December 30, 2022, were searched. Studies from Japan, Korea, China, Hong Kong, Taiwan, Singapore, Thailand, Vietnam, Myanmar, and Cambodia were included. Congenital thrombophilia was described as diseases including protein C (PC) deficiency, protein S (PS) deficiency, antithrombin (AT) deficiency, factor (F)V Leiden (FVL), and prothrombin G20210A mutations. Studies were selected by 2 reviewers for methodological quality analysis. A random-effects model was used for the meta-analysis, assuming that estimated effects in the different studies are not identical. Results: Forty-four studies involving 6453 patients from 7 counties/regions were included in the meta-analysis. The prevalence of PC, PS, and AT deficiencies were 7.1%, 8.3%, and 3.8%, respectively. Among 2924 patients from 22 studies, 5 patients were carriers of FVL mutation. Among 2196 patients from 10 studies, 2 patients were carriers of prothrombin G20210A mutation in a Thailand study. Conclusion: The prevalence of PC, PS, and AT deficiencies was relatively high, while a much lower prevalence of FVL and prothrombin G20210A mutations were identified in East-Asian patients with VTE. Our data stress the relative higher prevalence of PC, PS, and AT deficiencies for thrombophilia in the East-Asian VTE population.

14.
Vascul Pharmacol ; 153: 107216, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37699495

ABSTRACT

Pulmonary arterial hypertension (PAH) is a complex and progressive disease characterized by pulmonary arterial remodeling. Despite that current combination therapy has shown improvement in morbidity and mortality, a better deciphering of the underlying pathological mechanisms and novel therapeutic targets is urgently needed to combat PAH. MicroRNA, the critical element in post-transcription mechanisms, mediates cellular functions mainly by tuning downstream target gene expression. Meanwhile, upstream regulators can regulate miRNAs in synthesis, transcription, and function. In vivo and in vitro studies have suggested that miRNAs and their regulators are involved in PAH. However, the miRNA-related regulatory mechanisms governing pulmonary vascular remodeling and right ventricular dysfunction remain elusive. Hence, this review summarized the controversial roles of miRNAs in PAH pathogenesis, focused on different miRNA-upstream regulators, including transcription factors, regulatory networks, and environmental stimuli, and finally proposed the prospects and challenges for the therapeutic application of miRNAs and their regulators in PAH treatment.


Subject(s)
Hypertension, Pulmonary , MicroRNAs , Pulmonary Arterial Hypertension , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Pulmonary Arterial Hypertension/drug therapy , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/metabolism , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/genetics , Lung/pathology , Transcription Factors/metabolism , Vascular Remodeling , Pulmonary Artery
15.
Am J Cardiol ; 204: 207-214, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37556889

ABSTRACT

Because the 6-minute walking test (6MWT) is a self-paced submaximal test, the 6-minute walking distance (6MWD) is substantially influenced by individual effort level and physical condition, which is difficult to quantify. We aimed to explore the optimal indicator reflecting the perceived effort level during 6MWT. We prospectively enrolled 76 patients with pulmonary arterial hypertension and 152 healthy participants; they performed 2 6MWTs at 2 different speeds: (1) at leisurely speed, as performed in daily life without extra effort (leisure 6MWT) and (2) an increased walking speed, walking as the guideline indicated (standard 6MWT). The factors associated with 6MWD during standard 6MWT were investigated using a multiple linear regression analysis. The heart rate (HR) and Borg score increased and oxygen saturation (SpO2) decreased after walking in 2 6MWTs in both groups (all p <0.001). The ratio of difference in HR before and after each test (ΔHR) to HR before walking (HRat rest) and the difference in SpO2 (ΔSpO2) and Borg (ΔBorg) before and after each test were all significantly higher in both groups after standard 6MWT than after leisure 6MWT (all p <0.001). Multiple linear regression analysis revealed that ΔHR/HRat rest was an independent predictor of 6MWD during standard 6MWT in both groups (both p <0.001, adjusted R2 = 0.737 and 0.49, respectively). 6MWD and ΔHR/HRat rest were significantly lower in patients than in healthy participants (both p <0.001) and in patients with cardiac functional class III than in patients with class I/II (both p <0.001). In conclusion, ΔHR/HRat rest is a good reflector of combined physical and effort factors. HR response should be incorporated into 6MWD to better assess a participant's exercise capacity.


Subject(s)
Pulmonary Arterial Hypertension , Humans , Heart Rate , Walk Test , Walking/physiology , Regression Analysis , Exercise Test , Exercise Tolerance
16.
Hypertension ; 80(9): 1929-1939, 2023 09.
Article in English | MEDLINE | ID: mdl-37449418

ABSTRACT

BACKGROUND: The pathological mechanism of chronic thromboembolic pulmonary hypertension (CTEPH) is not fully understood, and inflammation has been reported to be one of its etiological factors. IgG regulates systemic inflammatory homeostasis, primarily through its N-glycans. Little is known about IgG N-glycosylation in CTEPH. We aimed to map the IgG N-glycome of CTEPH to provide new insights into its pathogenesis and discover novel markers and therapies. METHODS: We characterized the plasma IgG N-glycome of patients with CTEPH in a discovery cohort and validated our results in an independent validation cohort using matrix-assisted laser desorption/ionization time of flight mass spectrometry. Thereafter, we correlated IgG N-glycans with clinical parameters and circulating inflammatory cytokines in patients with CTEPH. Furthermore, we determined IgG N-glycan quantitative trait loci in CTEPH to reveal partial mechanisms underlying glycan changes. RESULTS: Decreased IgG galactosylation representing a proinflammatory phenotype was found in CTEPH. The distribution of IgG galactosylation showed a strong association with NT-proBNP (N-terminal pro-B-type natriuretic peptide) in CTEPH. In line with the glycomic findings, IgG pro-/anti-inflammatory N-glycans correlated well with a series of inflammatory markers and gene loci that have been reported to be involved in the regulation of these glycans or inflammatory immune responses. CONCLUSIONS: This is the first study to reveal the full signature of the IgG N-glycome of a proinflammatory phenotype and the genes involved in its regulation in CTEPH. Plasma IgG galactosylation may be useful for evaluating the inflammatory state in patients with CTEPH; however, this requires further validation. This study improves our understanding of the mechanisms underlying CTEPH inflammation from the perspective of glycomics.


Subject(s)
Hypertension, Pulmonary , Humans , Hypertension, Pulmonary/etiology , Phenotype , Inflammation , Immunoglobulin G/genetics , Polysaccharides
17.
Catheter Cardiovasc Interv ; 102(3): 558-567, 2023 09.
Article in English | MEDLINE | ID: mdl-37522190

ABSTRACT

BACKGROUND: The efficacy and safety of percutaneous transluminal pulmonary angioplasty (PTPA) for Takayasu arteritis-associated pulmonary hypertension (TA-PH) remain unclear. OBJECTIVES: To examine the efficacy and safety of PTPA in TA-PH. METHODS: PubMed, Embase, and the Cochrane Central Register of Controlled Trials Library were searched from inception to August 18, 2022, for articles investigating the efficacy and safety of PTPA for TA-PH. The primary efficacy outcomes were pulmonary vascular resistance (PVR) changes from baseline to re-evaluation and 6-minute walking distance (6MWD). The safety outcome was procedure-related complications. RESULTS: Five articles comprising 104 patients with TA-PH who underwent PTPA were included. The scores of article quality, as assessed using the methodological index for nonrandomized studies tool, were high, ranging from 13 to 15 points. The pooled treatment effects of PVR (weighted mean difference [WMD]: -4.8 WU; 95% confidence interval [CI]: -6.0 to -3.5 WU; I2 = 0.0%), 6MWD (WMD: 101.9 m; 95% CI: 60.3-143.6 m; I2 = 70.4%) significantly improved. Procedure-related complications, which predominantly present as pulmonary artery injury and pulmonary injury, occurred in 32.0% of the included patients. Periprocedural death occurred in one patient (1.0%, 1/100). CONCLUSIONS: Patients with TA-PH could benefit from PTPA in terms of hemodynamics and exercise tolerance, at the expense of procedure-related complications. PTPA should be encouraged to enhance the treatment response in TA-PH. These findings need to be confirmed by further studies, ideally, randomized controlled trials. REGISTRATION: PROSPERO CRD42022354087.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Takayasu Arteritis , Humans , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/therapy , Takayasu Arteritis/diagnosis , Takayasu Arteritis/diagnostic imaging , Treatment Outcome , Angioplasty/adverse effects , Pulmonary Arterial Hypertension/complications
18.
Oncologist ; 28(7): 555-564, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37171998

ABSTRACT

Cancer-associated thrombosis, with the incidence rising over the years, is associated with significant morbidity and mortality in patients with cancer. Recent advances in the treatment of cancer-associated venous thromboembolism (VTE) include the introduction of direct oral anticoagulants (DOACs), which provide a more convenient and effective option than low-molecular-weight heparin (LMWH). Nonetheless, important unmet needs remain including an increased risk of bleeding in certain patient subgroups such as those with gastroesophageal cancer, concerns about drug-drug interactions, and management of patients with severe renal impairment. Although DOACs are more convenient than LMWH, persistence can decline over time. Factor XI inhibitors have potential safety advantages over DOACs because factor XI appears to be essential for thrombosis but not hemostasis. In phase II trials, some factor XI inhibitors were superior to enoxaparin for the prevention of VTE after knee replacement surgery without increasing the risk of bleeding. Ongoing trials are assessing the efficacy and safety of factor XI inhibitors for the treatment of cancer-associated VTE.


Subject(s)
Neoplasms , Thrombosis , Venous Thromboembolism , Humans , Heparin, Low-Molecular-Weight/adverse effects , Anticoagulants , Venous Thromboembolism/drug therapy , Venous Thromboembolism/etiology , Venous Thromboembolism/prevention & control , Factor XI/therapeutic use , Thrombosis/etiology , Thrombosis/complications , Hemorrhage/chemically induced , Hemorrhage/complications , Hemorrhage/drug therapy , Neoplasms/complications , Neoplasms/drug therapy
19.
Nat Commun ; 14(1): 1820, 2023 03 31.
Article in English | MEDLINE | ID: mdl-37002243

ABSTRACT

Immune and inflammatory responses have an important function in the pathophysiology of pulmonary hypertension (PH). However, little is known about the immune landscape in peripheral circulation in patients with high-altitude pulmonary hypertension (HAPH). We apply single-cell transcriptomics to characterize the monocytes that are significantly enriched in the peripheral blood mononuclear cells (PBMC) of HAPH patients. We discover an increase in C1 (non-classical) and C2 (intermediate) monocytes in PBMCs and a decrease in hypoxia-inducible transcription factor-1α (HIF-1α) in all monocyte subsets associated with HAPH. In addition, we demonstrate that similar immune adaptations may exist in HAPH and PH. Overall, we characterize an immune cell atlas of the peripheral blood in HAPH patients. Our data provide evidence that specific monocyte subsets and HIF-1α downregulation might be implicated in the pathogenesis of HAPH.


Subject(s)
Hypertension, Pulmonary , Humans , Hypertension, Pulmonary/etiology , Altitude , Monocytes , Leukocytes, Mononuclear , Phenotype , Single-Cell Analysis
20.
Acta Pharmacol Sin ; 44(1): 8-18, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35817809

ABSTRACT

O-GlcNAcylation is a post-translational modification of protein in response to genetic variations or environmental factors, which is controlled by two highly conserved enzymes, i.e. O-GlcNAc transferase (OGT) and protein O-GlcNAcase (OGA). Protein O-GlcNAcylation mainly occurs in the cytoplasm, nucleus, and mitochondrion, and it is ubiquitously implicated in the development of cardiovascular disease (CVD). Alterations of O-GlcNAcylation could cause massive metabolic imbalance and affect cardiovascular function, but the role of O-GlcNAcylation in CVD remains controversial. That is, acutely increased O-GlcNAcylation is an adaptive heart response, which temporarily protects cardiac function. While it is harmful to cardiomyocytes if O-GlcNAcylation levels remain high in chronic conditions or in the long run. The underlying mechanisms include regulation of transcription, energy metabolism, and other signal transduction reactions induced by O-GlcNAcylation. In this review, we will focus on the interactions between protein O-GlcNAcylation and CVD, and discuss the potential molecular mechanisms that may be able to pave a new avenue for the treatment of cardiovascular events.


Subject(s)
Cardiovascular Diseases , Humans , Cardiovascular Diseases/metabolism , beta-N-Acetylhexosaminidases/genetics , beta-N-Acetylhexosaminidases/metabolism , Protein Processing, Post-Translational , Heart , Mitochondria/metabolism , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...