Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 162: 112254, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32392157

ABSTRACT

The eye is an extension of the central nervous system (CNS) and contains aqueous humor (AH), which is a fluid rich in biomolecules secreted from intraocular tissues; thus, this organ allows for non-invasive visualization of early changes in CNS disorders. There is a growing interest in developing implantable devices, such as intraocular-lens (IOL), for specific medical uses, including intraocular monitoring. We describe a novel IOL-sensing system for detecting AH biomarkers via biocompatible enzyme-activatable fluorogenic hydrogel sensors. Matrix-metalloproteinase-9, a biomarker of degenerative CNS and eye disorders, was selected as a target. A peptide-probe-incorporated fluorogenic IOL (FIOL) was developed using diacrylamide-group-modified poly(ethyleneglycol) (PEGDAAm) biocompatible hydrogels, adjusting the hydrogel mesh size to allow selective penetration of the target while blocking non-targets, using label-free detection with semi-permanently implantable sensors, and demonstrating the clinical feasibility of FIOL through in vivo testing. This novel FIOL-based sensing system represents a promising approach for liquid biopsy of intraocular fluids.


Subject(s)
Aqueous Humor/chemistry , Biosensing Techniques/methods , Hydrogels/chemistry , Matrix Metalloproteinase 9/analysis , Peptides/chemistry , Animals , Biomarkers/analysis , Cell Line , Central Nervous System Diseases/diagnosis , Fluorescent Dyes/chemistry , Humans , Lenses, Intraocular , Rabbits
2.
J Mater Chem B ; 7(45): 7120-7128, 2019 12 07.
Article in English | MEDLINE | ID: mdl-31602453

ABSTRACT

Methods of the early detection of diseases are based on recognition of the smallest change in the levels of a disease-specific biomarker in body fluids. Among them, monitoring protein concentrations is crucial because most diseases are caused by dysregulated protein levels, rather than DNA or RNA levels. Recent studies have indicated that the proteins in the aqueous humor can be used as biomarkers to predict brain diseases. Therefore, mounting an insertion type sensor on the intraocular lens is a compelling candidate platform for monitoring potential brain disease patients. In particular, molecular reactive sensors that use affinity binding, such as molecularly imprinted hydrogels, allow simple label-free detection, as well as high bio-applicability and biocompatibility. Herein, we describe the fabrication of an optical sensor using a silica nanoparticle conjugated bioresponsive hydrogel to analyze protein biomarkers by measuring light interference in smartphone images. Conformational changes in biotin-conjugated hydrogels were observed through the presence of avidin, as a substitution for a novel biomarker, in interconnecting hydrogel networks. Uniformly arrayed nanoparticles interfered with light differently when the distance between the silica nanoparticles was varied according to target moiety binding. A blue-shift of the reflected light was evident in avidin solutions of up to 100 nM and was induced by shrinkage of the hydrogel. The results indicate that our well-defined, label-free bioresponsive hydrogel demonstrated strong potential to be widely applied as a bioresponsive light interfering hydrogel sensor.


Subject(s)
Hydrogels/chemistry , Light , Molecular Imprinting , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Molecular Structure , Particle Size , Smartphone , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...