Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Anim Cells Syst (Seoul) ; 28(1): 1-14, 2024.
Article in English | MEDLINE | ID: mdl-38186856

ABSTRACT

Pulmonary arterial hypertension (PAH) is characterized by vascular remodeling associated with extracellular matrix (ECM) deposition, vascular cell hyperproliferation, and neointima formation in the small pulmonary artery. Endothelial dysfunction is considered a key feature in the initiation of vascular remodeling. Although vasodilators have been used for the treatment of PAH, it remains a life-threatening disease. Therefore, it is necessary to identify novel therapeutic targets for PAH treatment. Periostin (POSTN) is a secretory ECM protein involved in physiological and pathological processes, such as tissue remodeling, cell adhesion, migration, and proliferation. Although POSTN has been proposed as a potential target for PAH treatment, its role in endothelial cells has not been fully elucidated. Here, we demonstrated that POSTN upregulation correlates with PAH by analyzing a public microarray conducted on the lung tissues of patients with PAH and biological experimental results from in vivo and in vitro models. Moreover, POSTN overexpression leads to ECM deposition and endothelial abnormalities such as migration. We found that PAH-associated endothelial dysfunction is mediated at least in part by the interaction between POSTN and integrin-linked protein kinase (ILK), followed by activation of nuclear factor-κB signaling. Silencing POSTN or ILK decreases PAH-related stimuli-induced ECM accumulation and attenuates endothelial abnormalities. In conclusion, our study suggests that POSTN serves as a critical regulator of PAH by regulating vascular remodeling, and targeting its role as a potential therapeutic strategy for PAH.

2.
iScience ; 26(8): 107415, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37559903

ABSTRACT

Norrin (NDP) and WNT7A/B induce and maintain the blood-brain and blood-retina barrier (BBB, BRB) by stimulating the Frizzled4-LDL receptor related protein 5/6 (FZD4-LRP5/6) complex to induce beta-catenin-dependent signaling in endothelial cells (ECs). Recently developed agonists for the FZD4-LRP5 complex have therapeutic potential in retinal and neurological diseases. Here, we use the tetravalent antibody modality F4L5.13 to identify agonist activities in Tspan12-/- mice, which display a complex retinal pathology due to impaired NDP-signaling. F4L5.13 administration during development alleviates BRB defects, retinal hypovascularization, and restores neural function. In mature Tspan12-/- mice F4L5.13 partially induces a BRB de novo without inducing angiogenesis. In a genetic model of impaired BRB maintenance, administration of F4L5.13 rapidly and substantially restores the BRB. scRNA-seq reveals perturbations of key mediators of barrier functions in juvenile Tspan12-/- mice, which are in large parts restored after F4L5.13 administration. This study identifies transcriptional and functional activities of FZD4-LRP5 agonists.

3.
Cell Rep ; 42(5): 112455, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37149867

ABSTRACT

Dynamic and coordinated axonal responses to changing environments are critical for establishing neural connections. As commissural axons migrate across the CNS midline, they are suggested to switch from being attracted to being repelled in order to approach and to subsequently leave the midline. A molecular mechanism that is hypothesized to underlie this switch in axonal responses is the silencing of Netrin1/Deleted in Colorectal Carcinoma (DCC)-mediated attraction by the repulsive SLIT/ROBO1 signaling. Using in vivo approaches including CRISPR-Cas9-engineered mouse models of distinct Dcc splice isoforms, we show here that commissural axons maintain responsiveness to both Netrin and SLIT during midline crossing, although likely at quantitatively different levels. In addition, full-length DCC in collaboration with ROBO3 can antagonize ROBO1 repulsion in vivo. We propose that commissural axons integrate and balance the opposing DCC and Roundabout (ROBO) signaling to ensure proper guidance decisions during midline entry and exit.


Subject(s)
Nerve Tissue Proteins , Receptors, Immunologic , Animals , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Axon Guidance , Axons/metabolism , Netrins , Gene Expression Regulation, Developmental , DCC Receptor
4.
EMBO Mol Med ; 13(7): e13977, 2021 07 07.
Article in English | MEDLINE | ID: mdl-34105895

ABSTRACT

The FZD4:LRP5:TSPAN12 receptor complex is activated by the secreted protein Norrin in retinal endothelial cells and leads to ßcatenin-dependent formation of the blood-retina-barrier during development and its homeostasis in adults. Mutations disrupting Norrin signaling have been identified in several congenital diseases leading to hypovascularization of the retina and blindness. Here, we developed F4L5.13, a tetravalent antibody designed to induce FZD4 and LRP5 proximity in such a way as to trigger ßcatenin signaling. Treatment of cultured endothelial cells with F4L5.13 rescued permeability induced by VEGF in part by promoting surface expression of junction proteins. Treatment of Tspan12-/- mice with F4L5.13 restored retinal angiogenesis and barrier function. F4L5.13 treatment also significantly normalized neovascularization in an oxygen-induced retinopathy model revealing a novel therapeutic strategy for diseases characterized by abnormal angiogenesis and/or barrier dysfunction.


Subject(s)
Endothelial Cells , Retinal Diseases , Animals , Blood-Retinal Barrier , Mice , Retina , Signal Transduction
5.
Sci Rep ; 7(1): 2528, 2017 05 31.
Article in English | MEDLINE | ID: mdl-28566713

ABSTRACT

Activation of the endothelium by pro-inflammatory stimuli plays a key role in the pathogenesis of a multitude of vascular diseases. Angiogenesis is a crucial component of the vascular response associated with inflammatory signaling. The CD40/CD40 ligand dyad in endothelial cells (EC) has a central role in promoting vascular inflammatory response; however, the molecular mechanism underlying this component of inflammation and angiogenesis is not fully understood. Here we report a novel microRNA mediated suppression of endothelial CD40 expression. We found that CD40 is closely regulated by miR-424 and miR-503, which directly target its 3' untranslated region. Pro-inflammatory stimuli led to increased endothelial CD40 expression, at least in part due to decreased miR-424 and miR-503 expression. In addition, miR-424 and miR-503 reduced LPS induced EC sprouting, migration and tube formation. Moreover, we found that miR-424 and miR-503 expression is directly regulated by peroxisome proliferator-activated receptor gamma (PPARγ), whose endothelial expression and activity are decreased in response to inflammatory factors. Finally, we demonstrate that mice with endothelial-specific deletion of miR-322 (miR-424 ortholog) and miR-503 have augmented angiogenic response to LPS in a Matrigel plug assay. Overall, these studies identify a PPARγ-dependent miR-424/503-CD40 signaling axis that is critical for regulation of inflammation mediated angiogenesis.


Subject(s)
CD40 Antigens/genetics , Inflammation/genetics , Neovascularization, Pathologic/genetics , PPAR gamma/genetics , Animals , Cell Movement/genetics , Cell Proliferation/genetics , Humans , Mice , MicroRNAs/genetics , Morphogenesis/genetics , Signal Transduction
6.
BMB Rep ; 50(7): 384-389, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28602162

ABSTRACT

The Nogo-B receptor (NgBR) is necessary for not only Nogo-B-mediated angiogenesis but also vascular endothelial growth factor (VEGF) -induced angiogenesis. However, the molecular mechanisms underlying the regulatory role of the VEGF-NgBR axis in angiogenesis are not fully understood. Here, we report that miR-26a serves as a critical regulator of VEGF-mediated angiogenesis through directly targeting NgBR in endothelial cells (ECs). Stimulation of ECs by VEGF increased the expression of NgBR and decreased the expression of miR-26a. In addition, miR-26a decreased the VEGF-induced migration and proliferation of ECs. Moreover, miR-26a overexpression in ECs decreased the VEGF-induced phosphorylation of the endothelial nitric oxide synthase (eNOS) and the production of nitric oxide, which is important for angiogenesis. Overall, our data suggest that miR-26a plays a key role in VEGF-mediated angiogenesis through the modulation of eNOS activity, which is mediated by its ability to regulate NgBR expression by directly targeting the NgBR 3'-UTR. [BMB Reports 2017; 50(7): 384-389].


Subject(s)
Endothelial Cells/metabolism , MicroRNAs/metabolism , Neovascularization, Physiologic , Receptors, Cell Surface/metabolism , Vascular Endothelial Growth Factors/metabolism , Cell Proliferation , Cells, Cultured , Humans , MicroRNAs/genetics , Nitric Oxide/analysis
7.
Biochem Biophys Res Commun ; 482(1): 28-34, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27836539

ABSTRACT

Infection with pathogens activates the endothelial cell and its sustained activation may result in impaired endothelial function. Endothelial dysfunction contributes to the pathologic angiogenesis that is characteristic of infection-induced inflammatory pathway activation. Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) is a protein receptor which recognizes bacterial molecules and stimulates an immune reaction in various cells; however, the underlying molecular mechanisms in the regulation of inflammation-triggered angiogenesis are not fully understood. Here we report that peroxisome proliferator-activated receptor gamma (PPARγ)-mediated miR-125a serves as an important regulator of NOD1 agonist-mediated angiogenesis in endothelial cells by directly targeting NOD1. Treatment of human umbilical vein endothelial cells with natural PPARγ ligand, 15-Deoxy-Delta12,14-prostaglandin J2, led to inhibition of NOD1 expression; contrarily, protein levels of NOD1 were significantly increased by PPARγ knockdown. We report that PPARγ regulation of NOD1 expression is a novel microRNA-mediated regulation in endothelial cells. MiR-125a expression was markedly decreased in human umbilical vein endothelial cells subjected to PPARγ knockdown while 15-Deoxy-Delta12,14-prostaglandin J2 treatment increased the level of miR-125a. In addition, NOD1 is closely regulated by miR-125a, which directly targets the 3' untranslated region of NOD1. Moreover, both overexpression of miR-125a and PPARγ activation led to inhibition of NOD1 agonist-induced tube formation in endothelial cells. Finally, NOD1 agonist increased the formation of cranial and subintestinal vessel plexus in zebrafish, and this effect was abrogated by concurrent PPARγ activation. Overall, these findings identify a PPARγ-miR-125a-NOD1 signaling axis in endothelial cells that is critical in the regulation of inflammation-mediated angiogenesis.


Subject(s)
Endothelial Cells/metabolism , MicroRNAs/metabolism , Neovascularization, Pathologic/metabolism , Nod1 Signaling Adaptor Protein/metabolism , PPAR gamma/metabolism , Vasculitis/metabolism , Animals , Cells, Cultured , Down-Regulation , Endothelial Cells/pathology , Humans , Neovascularization, Pathologic/pathology , Vasculitis/pathology , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...