Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
CPT Pharmacometrics Syst Pharmacol ; 12(10): 1511-1528, 2023 10.
Article in English | MEDLINE | ID: mdl-37621010

ABSTRACT

We have built a quantitative systems toxicology modeling framework focused on the early prediction of oncotherapeutic-induced clinical intestinal adverse effects. The model describes stem and progenitor cell dynamics in the small intestinal epithelium and integrates heterogeneous epithelial-related processes, such as transcriptional profiles, citrulline kinetics, and probability of diarrhea. We fitted a mouse-specific version of the model to quantify doxorubicin and 5-fluorouracil (5-FU)-induced toxicity, which included pharmacokinetics and 5-FU metabolism and assumed that both drugs led to cell cycle arrest and apoptosis in stem cells and proliferative progenitors. The model successfully recapitulated observations in mice regarding dose-dependent disruption of proliferation which could lead to villus shortening, decrease of circulating citrulline, increased diarrhea risk, and transcriptional induction of the p53 pathway. Using a human-specific epithelial model, we translated the cytotoxic activity of doxorubicin and 5-FU quantified in mice into human intestinal injury and predicted with accuracy clinical diarrhea incidence. However, for gefitinib, a specific-molecularly targeted therapy, the mice failed to reproduce epithelial toxicity at exposures much higher than those associated with clinical diarrhea. This indicates that, regardless of the translational modeling approach, preclinical experimental settings have to be suitable to quantify drug-induced clinical toxicity with precision at the structural scale of the model. Our work demonstrates the usefulness of translational models at early stages of the drug development pipeline to predict clinical toxicity and highlights the importance of understanding cross-settings differences in toxicity when building these approaches.


Subject(s)
Citrulline , Drug-Related Side Effects and Adverse Reactions , Mice , Humans , Animals , Fluorouracil/toxicity , Fluorouracil/metabolism , Intestinal Mucosa/metabolism , Diarrhea/chemically induced , Doxorubicin/toxicity
2.
Br J Clin Pharmacol ; 89(1): 158-186, 2023 01.
Article in English | MEDLINE | ID: mdl-33226664

ABSTRACT

AIMS: The storm-like nature of the health crises caused by COVID-19 has led to unconventional clinical trial practices such as the relaxation of exclusion criteria. The question remains: how can we conduct diverse trials without exposing subgroups of populations to potentially harmful drug exposure levels? The aim of this study was to build a knowledge base of the effect of intrinsic/extrinsic factors on the disposition of several repurposed COVID-19 drugs. METHODS: Physiologically based pharmacokinetic (PBPK) models were used to study the change in the pharmacokinetics (PK) of drugs repurposed for COVID-19 in geriatric patients, different race groups, organ impairment and drug-drug interactions (DDIs) risks. These models were also used to predict epithelial lining fluid (ELF) exposure, which is relevant for COVID-19 patients under elevated cytokine levels. RESULTS: The simulated PK profiles suggest no dose adjustments are required based on age and race for COVID-19 drugs, but dose adjustments may be warranted for COVID-19 patients also exhibiting hepatic/renal impairment. PBPK model simulations suggest ELF exposure to attain a target concentration was adequate for most drugs, except for hydroxychloroquine, azithromycin, atazanavir and lopinavir/ritonavir. CONCLUSION: We demonstrate that systematically collated data on absorption, distribution, metabolism and excretion, human PK parameters, DDIs and organ impairment can be used to verify simulated plasma and lung tissue exposure for drugs repurposed for COVID-19, justifying broader patient recruitment criteria. In addition, the PBPK model developed was used to study the effect of age and ethnicity on the PK of repurposed drugs, and to assess the correlation between lung exposure and relevant potency values from in vitro studies for SARS-CoV-2.


Subject(s)
COVID-19 , Liver Diseases , Humans , Aged , SARS-CoV-2 , Drug Interactions , Hydroxychloroquine , Models, Biological , Pharmacokinetics , Computer Simulation
3.
Front Pharmacol ; 13: 929200, 2022.
Article in English | MEDLINE | ID: mdl-36091744

ABSTRACT

SimRFlow is a high-throughput physiologically based pharmacokinetic (PBPK) modelling tool which uses Certara's Simcyp® simulator. The workflow is comprised of three main modules: 1) a Data Collection module for automated curation of physicochemical (from ChEMBL and the Norman Suspect List databases) and experimental data (i.e.: clearance, plasma-protein binding, and blood-to-plasma ratio, from httk-R package databases), 2) a Simulation module which activates the Simcyp® simulator and runs Monte Carlo simulations on virtual subjects using the curated data, and 3) a Data Visualisation module for understanding the simulated compound-specific profiles and predictions. SimRFlow has three administration routes (oral, intravenous, dermal) and allows users to change some simulation parameters including the number of subjects, simulation duration, and dosing. Users are only expected to provide a file of the compounds they wish to simulate, and in return the workflow provides summary statistics, concentration-time profiles of various tissue types, and a database file (containing in-depth results) for each simulated compound. This is presented within a guided and easy-to-use R Shiny interface which provides many plotting options for the visualisation of concentration-time profiles, parameter distributions, trends between the different parameters, as well as comparison of predicted parameters across all batch-simulated compounds. The in-built R functions can be assembled in user-customised scripts which allows for the modification of the workflow for different purposes. SimRFlow proves to be a time-efficient tool for simulating a large number of compounds without any manual curation of physicochemical or experimental data necessary to run Simcyp® simulations.

4.
Int J Mol Sci ; 23(3)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35163210

ABSTRACT

Doxorubicin is widely used in the treatment of different cancers, and its side effects can be severe in many tissues, including the intestines. Symptoms such as diarrhoea and abdominal pain caused by intestinal inflammation lead to the interruption of chemotherapy. Nevertheless, the molecular mechanisms associated with doxorubicin intestinal toxicity have been poorly explored. This study aims to investigate such mechanisms by exposing 3D small intestine and colon organoids to doxorubicin and to evaluate transcriptomic responses in relation to viability and apoptosis as physiological endpoints. The in vitro concentrations and dosing regimens of doxorubicin were selected based on physiologically based pharmacokinetic model simulations of treatment regimens recommended for cancer patients. Cytotoxicity and cell morphology were evaluated as well as gene expression and biological pathways affected by doxorubicin. In both types of organoids, cell cycle, the p53 signalling pathway, and oxidative stress were the most affected pathways. However, significant differences between colon and SI organoids were evident, particularly in essential metabolic pathways. Short time-series expression miner was used to further explore temporal changes in gene profiles, which identified distinct tissue responses. Finally, in silico proteomics revealed important proteins involved in doxorubicin metabolism and cellular processes that were in line with the transcriptomic responses, including cell cycle and senescence, transport of molecules, and mitochondria impairment. This study provides new insight into doxorubicin-induced effects on the gene expression levels in the intestines. Currently, we are exploring the potential use of these data in establishing quantitative systems toxicology models for the prediction of drug-induced gastrointestinal toxicity.


Subject(s)
Doxorubicin/toxicity , Intestines/drug effects , Intestines/metabolism , Apoptosis/drug effects , Cell Cycle/drug effects , Colon/drug effects , Doxorubicin/pharmacology , Gene Expression/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/genetics , Humans , Intestine, Small/drug effects , Models, Biological , Organoids/cytology , Organoids/drug effects , Organoids/metabolism , Proteomics , Transcriptome/genetics
5.
Int J Mol Sci ; 23(4)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35216325

ABSTRACT

Gefitinib is a tyrosine kinase inhibitor (TKI) that selectively inhibits the epidermal growth factor receptor (EGFR), hampering cell growth and proliferation. Due to its action, gefitinib has been used in the treatment of cancers that present abnormally increased expression of EGFR. However, side effects from gefitinib therapy may occur, among which diarrhoea is most common, that can lead to interruption of the planned therapy in the more severe cases. The mechanisms underlying intestinal toxicity induced by gefitinib are not well understood. Therefore, this study aims at providing insight into these mechanisms based on transcriptomic responses induced in vitro. A 3D culture of healthy human colon and small intestine (SI) organoids was exposed to 0.1, 1, 10 and 30 µM of gefitinib, for a maximum of three days. These drug concentrations were selected using physiologically-based pharmacokinetic simulation considering patient dosing regimens. Samples were used for the analysis of viability and caspase 3/7 activation, image-based analysis of structural changes, as well as RNA isolation and sequencing via high-throughput techniques. Differential gene expression analysis showed that gefitinib perturbed signal transduction pathways, apoptosis, cell cycle, FOXO-mediated transcription, p53 signalling pathway, and metabolic pathways. Remarkably, opposite expression patterns of genes associated with metabolism of lipids and cholesterol biosynthesis were observed in colon versus SI organoids in response to gefitinib. These differences in the organoids' responses could be linked to increased activated protein kinase (AMPK) activity in colon, which can influence the sensitivity of the colon to the drug. Therefore, this study sheds light on how gefitinib induces toxicity in intestinal organoids and provides an avenue towards the development of a potential tool for drug screening and development.


Subject(s)
Gefitinib/pharmacology , Intestines/drug effects , Organoids/drug effects , Transcriptome/genetics , Aged , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/metabolism , Humans , Intestines/metabolism , Male , Organoids/metabolism , Quinazolines/pharmacology , Signal Transduction/drug effects , Tumor Suppressor Protein p53/metabolism
6.
Br J Clin Pharmacol ; 87(10): 3988-4000, 2021 10.
Article in English | MEDLINE | ID: mdl-33733472

ABSTRACT

AIMS: Herbal products, spices and/or fruits are perceived as inherently healthy; for instance, St. John's wort (SJW) is marketed as a natural antidepressant and patients often self-administer it concomitantly with oncology medications. However, food constituents/herbs can interfere with drug pharmacokinetics, with risk of altering pharmacodynamics and efficacy. The objective of this work was to develop a strategy to prioritize herb- or food constituent-drug interactions (FC-DIs) to better assess oncology drug clinical risk. METHODS: Physiologically based pharmacokinetic (PBPK) models were developed by integrating in vitro parameters with the clinical pharmacokinetics of food constituents in grapefruit juice (bergamottin), turmeric (curcumin) or SJW (hyperforin). Perpetrator files were linked to verified victim PBPK models through appropriate interaction mechanisms (cytochrome P450 3A, breast cancer resistance protein, P-glycoprotein) and applied in prospective PBPK simulations to inform the likelihood and magnitude of changes in exposure to osimertinib, olaparib or acalabrutinib. RESULTS: Reported FC-DIs with oncology drugs were well recovered, with absolute average fold error values of 1.10 (bergamottin), 1.05 (curcumin) and 1.01 (hyperforin). Prospective simulations with grapefruit juice and turmeric showed clinically minor to insignificant changes in exposure (<1.50-fold) to acalabrutinib, osimertinib and olaparib, but predicted 1.57-fold FC-DI risk between acalabrutinib and curcumin. Moderate DDI risk was expected when acalabrutinib, osimertinib or olaparib were dosed with SJW. CONCLUSIONS: A model-informed decision tree based on mechanistic understanding of transporter and/or enzyme-mediated FC-DI is proposed based on bergamottin, curcumin and hyperforin FC-DI clinical data. Adopting this quantitative modelling approach should streamline herbal product safety assessments, assist in FC-DI management, and ultimately promote safe clinical use of oncology drugs.


Subject(s)
Herb-Drug Interactions , Hypericum , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Drug Interactions , Drug Labeling , Humans , Neoplasm Proteins , Prospective Studies
7.
CPT Pharmacometrics Syst Pharmacol ; 10(2): 108-118, 2021 02.
Article in English | MEDLINE | ID: mdl-33439535

ABSTRACT

This analysis reports a quantitative modeling and simulation approach for oral dapagliflozin, a primarily uridine diphosphate-glucuronosyltransferase (UGT)-metabolized human sodium-glucose cotransporter 2 selective inhibitor. A mechanistic dapagliflozin physiologically based pharmacokinetic (PBPK) model was developed using in vitro metabolism and clinical pharmacokinetic (PK) data and verified for context of use (e.g., exposure predictions in pediatric subjects aged 1 month to 18 years). Dapagliflozin exposure is challenging to predict in pediatric populations owing to differences in UGT1A9 ontogeny maturation and paucity of clinical PK data in younger age groups. Based on the exposure-response relationship of dapagliflozin, twofold acceptance criteria were applied between model-predicted and observed drug exposures and PK parameters (area under the curve and maximum drug concentration) in various scenarios, including monotherapy in healthy adults (single/multiple dose), monotherapy in hepatically or renally impaired patients, and drug-drug interactions with UGT1A9 modulators, such as mefenamic acid and rifampin. The PBPK model captured the observed exposure within twofold of the observed monotherapy data in adults and adolescents and in special population. As a guide to determining dosing regimens in pediatric studies, the verified PBPK model, along with UGT enzyme ontogeny maturation understanding, was used for predictions of dapagliflozin monotherapy exposures in pediatric subjects aged 1 month to 18 years that best matched exposure in adult patients with a 10-mg single dose of dapagliflozin.


Subject(s)
Benzhydryl Compounds/pharmacokinetics , Glucosides/pharmacokinetics , Glucuronosyltransferase/metabolism , Mefenamic Acid/pharmacokinetics , Rifampin/pharmacokinetics , Sodium-Glucose Transporter 2 Inhibitors/pharmacokinetics , UDP-Glucuronosyltransferase 1A9/metabolism , Administration, Oral , Adolescent , Antibiotics, Antitubercular/administration & dosage , Antibiotics, Antitubercular/adverse effects , Antibiotics, Antitubercular/pharmacokinetics , Area Under Curve , Child , Child, Preschool , Computer Simulation , Cyclooxygenase Inhibitors/administration & dosage , Cyclooxygenase Inhibitors/adverse effects , Cyclooxygenase Inhibitors/pharmacokinetics , Dose-Response Relationship, Drug , Drug Interactions , Female , Healthy Volunteers/statistics & numerical data , Hepatic Insufficiency/drug therapy , Humans , Infant , Infant, Newborn , Male , Mefenamic Acid/administration & dosage , Mefenamic Acid/adverse effects , Models, Biological , Predictive Value of Tests , Renal Insufficiency/drug therapy , Rifampin/administration & dosage , Rifampin/adverse effects
8.
Biomed Mater Eng ; 26 Suppl 1: S1791-6, 2015.
Article in English | MEDLINE | ID: mdl-26405948

ABSTRACT

Due to next-generation sequencing (NGS) technology, genome sequencing is able to process much more data at low cost. In NGS data analysis, the mapping of sequences into a reference genome takes the largest amount of time to process. Although the Burrows-Wheeler Aligner (BWA) tool is one of the most widely used open-source software tools to align read sequences, it is still limited in that it does not fully support multi-thread mechanisms during the alignment steps. In this paper, we propose a BWA-MT tool, evolved from BWA but supporting multi-thread computation, designed to fully utilize the underlying multi-core architecture of computing resources. By using multi-thread computation, BWA-MT can significantly shorten the time needed to generate an alignment for single-end read sequences. Meanwhile, it generates an identical Sequence Alignment Map (SAM) result file as BWA. To evaluate BWA-MT, we use an evaluation system equipped with twelve cores and 32 GB memory. As a workload, we used the hg19 human genome reference sequence and various numbers of read sequences from 1M to 40M. In our evaluation, BWA-MT displays up to 3.7 times faster performance and generates an identical SAM result file to BWA. Although the increased speed might be dependent on computing resources, we confirm that BWA-MT is highly efficient and effective.


Subject(s)
Algorithms , Chromosome Mapping/methods , Genome, Human/genetics , High-Throughput Nucleotide Sequencing/methods , Sequence Alignment/methods , Sequence Analysis, DNA/methods , Base Sequence , Humans , Molecular Sequence Data
9.
Biomed Res Int ; 2013: 939460, 2013.
Article in English | MEDLINE | ID: mdl-23710465

ABSTRACT

Recently, biological applications start to be reimplemented into the applications which exploit many cores of GPUs for better computation performance. Therefore, by providing virtualized GPUs to VMs in cloud computing environment, many biological applications will willingly move into cloud environment to enhance their computation performance and utilize infinite cloud computing resource while reducing expenses for computations. In this paper, we propose a BioCloud system architecture that enables VMs to use GPUs in cloud environment. Because much of the previous research has focused on the sharing mechanism of GPUs among VMs, they cannot achieve enough performance for biological applications of which computation throughput is more crucial rather than sharing. The proposed system exploits the pass-through mode of PCI express (PCI-E) channel. By making each VM be able to access underlying GPUs directly, applications can show almost the same performance as when those are in native environment. In addition, our scheme multiplexes GPUs by using hot plug-in/out device features of PCI-E channel. By adding or removing GPUs in each VM in on-demand manner, VMs in the same physical host can time-share their GPUs. We implemented the proposed system using the Xen VMM and NVIDIA GPUs and showed that our prototype is highly effective for biological GPU applications in cloud environment.


Subject(s)
Computers , Software , Algorithms , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...