Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38675491

ABSTRACT

Interleukin (IL)-32 is produced by T lymphocytes, natural killer cells, monocytes, and epithelial cells. IL-32 induces the production of pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α, IL-1ß, IL-6, and IL-8, and IL-32 expression is highly increased in rheumatoid arthritis (RA) patients. Enolase-1 (ENO1) is a glycolytic enzyme and the stimulation of ENO1 induces high levels of pro-inflammatory cytokines in concanavalin A (Con A)-activated peripheral blood mononuclear cells (PBMCs) and macrophages in RA patients. In addition, there are many reports that anti-ENO1 antibody is correlated with the disease progression of RA. It implies that ENO1 could regulate IL-32 production during inflammation related to the pathogenesis of RA. Therefore, we investigated the role of ENO1 in IL-32 production using Con A-activated PBMCs and RA PBMCs. IL-32 expression is increased by ENO1 stimulation using real-time PCR and ELISA. In addition, we confirmed that IL-32 production was decreased in Con A-activated PBMCs and RA PBMCs pre-treated with NF-κB or p38 MAPK pathway inhibitors. Taken together, these results suggest that ENO1 plays an important role in inflammation through the induction of IL-32 production by the activation of the NF-κB and p38 MAPK pathways.

2.
Int J Mol Sci ; 23(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36142515

ABSTRACT

Reactive oxygen species (ROS), which are exceptionally high in IBD lesions, are known to cause abnormal immune responses to inflammatory reactions in inflammatory bowel diseases (IBD) through damage to the intestinal mucosal linings. Moreover, they are theorized to be an agent of IBD development. Vitamin C is widely known to be an effective antioxidant for its ability to regulate inflammatory responses through its ROS scavenging effect. Therefore, we examined vitamin C's influence on the development and progression of IBD in Gulo(-/-) mice, which cannot synthesize vitamin C like humans due to a defect in the expression of L-gulono-γ-lactone oxidase, an essential enzyme for vitamin C production. First, we found extensive oxidative stress and an inflammation increase in the colon of vitamin C-insufficient Gulo(-/-) mice. We also found decreased IL-22 production and NKp46(+) cell recruitment and the impaired activation of the p38MAPK pathway. Additionally, comparing vitamin C-insufficient Gulo(-/-) mice to vitamin C-sufficient Gulo(-/-) mice and wild-type mice, the insufficient group faced a decrease in mucin-1 expression, accompanied by an increase in IL-6 production, followed by the activation of the STAT3 and Akt pathways. The results suggest that vitamin C insufficiency induces severe colitis, meaning vitamin C could also take on a preventative role by regulating the production of cytokines and the induction of inflammation.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Mustelidae , Animals , Antioxidants/pharmacology , Ascorbic Acid/pharmacology , Colitis/pathology , Cytokines , Dextran Sulfate/toxicity , Humans , Inflammation , Interleukin-6/adverse effects , Interleukins , L-Gulonolactone Oxidase , Mice , Mice, Inbred C57BL , Mucin-1 , Mustelidae/metabolism , Proto-Oncogene Proteins c-akt , Reactive Oxygen Species/metabolism , Vitamins , Interleukin-22
3.
Biomedicines ; 10(5)2022 May 11.
Article in English | MEDLINE | ID: mdl-35625849

ABSTRACT

Pancreatic cancer (PCa), one of the most malignant solid tumors, has a high mortality rate. Although there have been many trials of chemotherapeutic drugs such as gemcitabine, the mortality rates remain significantly higher than for other types of cancer. Therefore, more effective ways of improving conventional therapy for PCa are needed. Cancer cells take up large amounts of glutamine to drive their rapid proliferation. Recent studies show that the amino acid transporter SLC6A14 is upregulated in some cancers alongside glutamine metabolism. Alloferon, a peptide isolated from the insect immune system, exerts anti-viral and anti-inflammatory effects via its immunomodulatory function. In addition, it has anti-tumoral effects, although the underlying mechanisms are largely unknown. Therefore, we investigated the effects of alloferon on the PCa cell lines Panc-1 and AsPC-1. Exposure of these cells to alloferon for 3 weeks led to the downregulation of SLC6A14 expression and decreased glutamine uptake. Given that SLC6A14 plays a role in tumor progression and survival by promoting glutamine uptake into cancer cells, alloferon could be a potential adjuvant for the chemotherapeutic drug gemcitabine.

4.
Int J Mol Sci ; 23(2)2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35054942

ABSTRACT

Interleukin (IL)-22 is a potent mediator of inflammatory responses. The IL-22 receptor consists of the IL-22Rα and IL-10Rß subunits. Previous studies have shown that IL-22Rα expression is restricted to non-hematopoietic cells in the skin, pancreas, intestine, liver, lung, and kidney. Although IL-22 is involved in the development of inflammatory responses, there have been no reports of its role in brain inflammation. Here, we used RT-PCR, Western blotting, flow cytometry, immunohistochemical, and microarray analyses to examine the role of IL-22 and expression of IL-22Rα in the brain, using the microglial cell line, hippocampal neuronal cell line, and inflamed mouse brain tissue. Treatment of BV2 and HT22 cells with recombinant IL-22 increased the expression levels of the pro-inflammatory cytokines IL-6 and TNF-α, as well as cyclooxygenase (COX)-2 and prostaglandin E2. We also found that the JNK and STAT3 signaling pathways play an important role in IL-22-mediated increases in inflammatory mediators. Microarray analyses revealed upregulated expression of inflammation-related genes in IL-22-treated HT22 cells. Finally, we found that IL-22Rα is spontaneously expressed in the brain and is upregulated in inflamed mouse brain. Overall, our results demonstrate that interaction of IL-22 with IL-22Rα plays a role in the development of inflammatory responses in the brain.


Subject(s)
Brain/metabolism , Encephalitis/etiology , Encephalitis/metabolism , Interleukins/metabolism , Receptors, Interleukin/metabolism , Animals , Brain/pathology , Cytokines/metabolism , Disease Models, Animal , Disease Susceptibility , Encephalitis/pathology , Gene Expression , Immunohistochemistry , Inflammation Mediators/metabolism , Interleukins/genetics , Mice , Mice, Knockout , Microglia/metabolism , Protein Binding , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , Receptors, Interleukin/genetics , Signal Transduction , Interleukin-22
5.
Int J Mol Sci ; 24(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36614125

ABSTRACT

The use of vaccines is the most effective and reliable method for the prevention of viral infections. However, research on evaluation of effective therapeutic agents for use in treatment after infection is necessary. Zanamivir was administered through inhalation for treatment of pandemic influenza A/H1N1 in 2009. However, the emergence of drug-resistant strains can occur rapidly. Alloferon, an immunomodulatory drug developed as an NK cell activator, exerts antiviral effects against various viruses, particularly influenza viruses. Therefore, alloferon and zanamivir were administered in combination in an effort to improve the antiviral effect of zanamivir by reducing H1N1 resistance. First, we confirmed that administration of combined treatment would result in effective inhibition of viral proliferation in MDCK and A549 cells infected with H1N1. Production of IL-6 and MIP-1α in these cells and the activity of p38 MAPK and c-Jun that are increased by H1N1 were inhibited by combined treatment. Mice were then infected intranasally with H1N1, and examination of the antiviral efficacy of the alloferon/zanamivir combination was performed. The results showed that combined treatment after infection with H1N1 prevented weight loss, increased the survival rate, and improved lung fibrosis. Combined treatment also resulted in reduced infiltration of neutrophils and macrophages into the lungs. Combined treatment effectively inhibited the activity of p38 MAPK and c-Jun in lung tissue, which was increased by infection with H1N1. Therefore, the combination of alloferon/zanamivir effectively prevents the development of H1N1-mediated inflammation in the lungs by inhibiting the production of inflammatory mediators and migration of inflammatory cells into lung tissue.


Subject(s)
Antiviral Agents , Orthomyxoviridae Infections , Zanamivir , Animals , Humans , Mice , Antiviral Agents/pharmacology , Drug Resistance, Viral , Influenza A Virus, H1N1 Subtype , Neuraminidase , Oseltamivir/pharmacology , Zanamivir/pharmacology , Orthomyxoviridae Infections/drug therapy
6.
Antioxidants (Basel) ; 10(6)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34208021

ABSTRACT

Atopic dermatitis (AD), a chronic inflammatory skin disease, is characterized by eczemous lesions on the skin that manifest as severe itching and last a long time. AD is thought to be a response to local allergens, including house dust mites (HDMs). Aptamin C is a modified form of vitamin C comprised of aptamers (DNA fragments) that bind specifically to vitamin C and inhibit its oxidation, thereby increasing its stability and antioxidant effects. It is already known that vitamin C shows an anti-inflammatory effect on skin inflammation. Oxidative stress is one of the major causes of inflammatory diseases, including HDM-induced skin inflammation, suggesting that the antioxidant activity of Aptamin C could regulate inflammatory responses to HDMs in the skin keratinocyte cell line HaCaT and primary skin keratinocytes. Aptamin C not only inhibited HDM-induced proliferation of both type of cells, but suppressed HDM-induced increases in interleukin (IL)-1α and IL-6 production by these cells. In addition, Aptamin C suppressed the production of IL-17 and IL-22 by T cells, which are closely associated with AD pathogenesis, as well as HDM-induced IL-22Rα expression. Aptamin C also reduced the production of thymus and activation-regulated chemokine (TARC) by suppressing the interaction between IL-22 and IL-22Rα, as well as reducing T cell migration. Although HDM treatment markedly increased the expression of glial cell line-derived neurotrophic factor (GDNF), which is associated with itching in AD skin lesions, this increase was reduced by Aptamin C treatment. Taken together, these results suggest that Aptamin C can effectively regulate inflammatory lesions, such as AD, by regulating the production of inflammatory cytokines and GDNF induced by HDM.

7.
Aging (Albany NY) ; 13(3): 3202-3217, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33539321

ABSTRACT

Prostate cell proliferation, driven by testosterone, is a major characteristic of benign prostatic hyperplasia (BPH). GV1001, a human telomerase reverse transcriptase catalytic subunit, is an injectable formulation used as a cancer vaccine. It functions as a cell penetrating peptide to regulate cell proliferation. Here, we found that GV1001 effectively suppressed proliferation of prostatic stromal myofibroblasts (WPMY-1) and prostatic epithelial cells (RWPE-1 and WPE-NA22) treated with dihydrotestosterone. Also, GV1001 bound to androgen receptors (ARs) in the cytosol of stromal and epithelial cells. In an experimental animal model implanted with an infusion pump for spontaneous and continuous release of testosterone, revealed that GV1001 reduced prostatic hypertrophy and inhibited the cell proliferation and the expression of Ki67, proliferating cell nuclear antigen, and prostate specific antigen. In addition, GV1001 prevented fibrosis of the prostate by downregulating expression of prostatic epithelial-mesenchymal transition (EMT)-related proteins such as transforming growth factor (TGF)-ß, Snail, Slug, N-cadherin, and Vimentin, and by up-regulating E-cadherin. Taken together, these results suggest that GV1001, which suppresses TGF-ß-mediated EMT by outcompeting testosterone for binding to AR, is a potential therapeutic drug for BPH accompanied by prostatic fibrosis.


Subject(s)
Cell Proliferation/drug effects , Epithelial-Mesenchymal Transition/drug effects , Peptide Fragments/pharmacology , Prostatic Hyperplasia/metabolism , Receptors, Androgen , Telomerase/pharmacology , Animals , Cell Line , Dihydrotestosterone/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Male , Mice , Mice, Inbred C57BL , Receptors, Androgen/drug effects , Receptors, Androgen/metabolism
8.
Chem Sci ; 11(22): 5658-5668, 2020 Jun 14.
Article in English | MEDLINE | ID: mdl-32874505

ABSTRACT

Two of the most critical factors for the survival of glioblastoma (GBM) patients are precision diagnosis and the tracking of treatment progress. At the moment, various sophisticated and specific diagnostic procedures are being used, but there are relatively few simple diagnosis methods. This work introduces a sensing probe based on a turn-on type fluorescence response that can measure the cysteine (Cys) level, which is recognized as a new biomarker of GBM, in human-derived cells and within on-site human clinical biopsy samples. The Cys-initiated chemical reactions of the probe cause a significant fluorescence response with high selectivity, high sensitivity, a fast response time, and a two-photon excitable excitation pathway, which allows the imaging of GBM in both mouse models and human tissue samples. The probe can distinguish the GBM cells and disease sites in clinical samples from individual patients. Besides, the probe has no short or long-term toxicity and immune response. The present findings hold promise for application of the probe to a relatively simple and straightforward following of GBM at clinical sites.

9.
ACS Biomater Sci Eng ; 6(8): 4390-4396, 2020 08 10.
Article in English | MEDLINE | ID: mdl-33455188

ABSTRACT

A hybrid composite of silver nanoparticles (AgNPs) and porous silicon microparticles (pSiMPs) was developed and applied for the computed tomography (CT) scanning of the lungs as an image-guided localization agent. We confirmed the grafting of AgNPs on oxidized pSiMPs template using various analytical equipment, including a scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDS). The hybrid composite showed a high CT contrast intensity (>1000 HU) that enabled us to produce and view images of the lungs. In addition, it showed the ability to maintain a strong CT signal at the injected area of the rabbit's lungs, up to an hour, without spreading. The lack of toxicity and immune response indicated that the composite could be fully utilized as a new image-guided localization agent of CT scans for lung cancer surgery.


Subject(s)
Metal Nanoparticles , Silver , Animals , Lung/diagnostic imaging , Porosity , Rabbits , Silicon , Tomography , Tomography, X-Ray Computed
10.
Korean J Pathol ; 46(3): 278-81, 2012 Jun.
Article in English | MEDLINE | ID: mdl-23110015

ABSTRACT

Squamoid eccrine ductal carcinoma (SEDC) is an exceedingly rare tumor that shows both squamous and adnexal ductal differentiation. We report a case of this unusual tumor occurring on the occiput of a 53-year-old man. A histopathological examination revealed a nodular lesion infiltrating the dermis and subcutaneous tissue with numerous duct-like structure and squamoid differentiation foci. Five months later, the patient presented with a palpable mass at the site of the previous excision and the right side of the neck. Sono-guided fine needle aspiration of the right neck mass was performed and was diagnosed as a metastastasis of a lymph node. A right neck node dissection and re-excision of the occiput was performed. The histopathological findings were similar, but squamoid differentiation was more prominent than that in the previous lesion. Because of the rarity of SEDC, little is known about its biological behavior and optimal treatment.

SELECTION OF CITATIONS
SEARCH DETAIL