Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Cell Rep ; 43(5): 114193, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38709635

ABSTRACT

Astrocytes play vital roles in blood-brain barrier (BBB) maintenance, yet how they support BBB integrity under normal or pathological conditions remains poorly defined. Recent evidence suggests that ion homeostasis is a cellular mechanism important for BBB integrity. In the current study, we investigated the function of an astrocyte-specific pH regulator, Slc4a4, in BBB maintenance and repair. We show that astrocytic Slc4a4 is required for normal astrocyte morphological complexity and BBB function. Multi-omics analyses identified increased astrocytic secretion of CCL2 coupled with dysregulated arginine-NO metabolism after Slc4a4 deletion. Using a model of ischemic stroke, we found that loss of Slc4a4 exacerbates BBB disruption, which was rescued by pharmacological or genetic inhibition of the CCL2-CCR2 pathway in vivo. Together, our study identifies the astrocytic Slc4a4-CCL2 and endothelial CCR2 axis as a mechanism controlling BBB integrity and repair, while providing insights for a therapeutic approach against BBB-related CNS disorders.


Subject(s)
Astrocytes , Blood-Brain Barrier , Chemokine CCL2 , Receptors, CCR2 , Stroke , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Astrocytes/metabolism , Astrocytes/pathology , Receptors, CCR2/metabolism , Animals , Chemokine CCL2/metabolism , Stroke/metabolism , Stroke/pathology , Mice , Signal Transduction , Male , Humans , Mice, Inbred C57BL , Brain/metabolism , Brain/pathology
2.
Proc Natl Acad Sci U S A ; 120(35): e2304112120, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37607236

ABSTRACT

Wnt signaling plays an essential role in developmental and regenerative myelination in the central nervous system. The Wnt signaling pathway is composed of multiple regulatory layers; thus, how these processes are coordinated to orchestrate oligodendrocyte (OL) development remains unclear. Here, we show CK2α, a Wnt/ß-catenin signaling Ser/Thr kinase, phosphorylates Daam2, inhibiting its function and Wnt activity during OL development. Intriguingly, we found Daam2 phosphorylation differentially impacts distinct stages of OL development, accelerating early differentiation followed by decelerating maturation and myelination. Application toward white matter injury revealed CK2α-mediated Daam2 phosphorylation plays a protective role for developmental and behavioral recovery after neonatal hypoxia, while promoting myelin repair following adult demyelination. Together, our findings identify a unique regulatory node in the Wnt pathway that regulates OL development via protein phosphorylation-induced signaling complex instability and highlights a new biological mechanism for myelin restoration.


Subject(s)
White Matter , Phosphorylation , Myelin Sheath , Wnt Signaling Pathway
3.
bioRxiv ; 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37066295

ABSTRACT

Astrocytes play vital roles in blood-brain barrier (BBB) maintenance, yet how they support BBB integrity under normal or pathological conditions remains poorly defined. Recent evidence suggests pH homeostasis is a new cellular mechanism important for BBB integrity. In the current study, we investigated the function of an astrocyte-specific pH regulator, Slc4a4, in BBB maintenance and repair. We show that astrocytic Slc4a4 is required for normal astrocyte morphological complexity and BBB function. Multi-omics analyses identified increased astrocytic secretion of CCL2 coupled with dysregulated arginine-NO metabolism after Slc4a4 deletion. Using a model of ischemic stroke, we found that loss of Slc4a4 exacerbates BBB disruption and reactive gliosis, which were both rescued by pharmacological or genetic inhibition of the NO-CCL2 pathway in vivo. Together, our study identifies the astrocytic Slc4a4-NO-CCL2 axis as a pivotal mechanism controlling BBB integrity and repair, while providing insights for a novel therapeutic approach against BBB-related CNS disorders.

4.
Int J Mol Sci ; 23(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35216272

ABSTRACT

Triple-negative breast cancer (TNBC) accounts for approximately 10-15% of all breast cancer cases and is characterized by high invasiveness, high metastatic potential, relapse proneness, and poor prognosis. M2-like tumor-associated macrophages (TAMs) contribute to tumorigenesis and are promising targets for inhibiting breast cancer metastasis. Therefore, we investigated whether melittin-conjugated pro-apoptotic peptide (TAMpepK) exerts therapeutic effects on breast cancer metastasis by targeting M2-like TAMs. TAMpepK is composed of M2-like TAM binding peptide (TAMpep) and pro-apoptotic peptide d(KLAKLAK)2 (dKLA). A metastatic mouse model was constructed by injecting 4T1-luc2 cells either orthotopically or via tail vein injection, and tumor burden was quantified using a bioluminescence in vivo imaging system. We found that TAMpepK suppressed lung and lymph node metastases of breast cancer by eliminating M2-like TAMs without affecting the viability of M1-like macrophages and resident macrophages in the orthotopic model. Furthermore, TAMpepK reduced pulmonary seeding and the colonization of tumor cells in the tail vein injection model. The number of CD8+ T cells in contact with TAMs was significantly decreased in tumor nodules treated with TAMpepK, resulting in the functional activation of cytotoxic CD8+ T cells. Taken together, our findings suggest that TAMpepK could be a novel therapeutic agent for the inhibition of breast cancer metastasis by targeting M2-like TAMs.


Subject(s)
Apoptosis/drug effects , Lymphatic Metastasis/drug therapy , Melitten/pharmacology , Peptides/pharmacokinetics , Triple Negative Breast Neoplasms/drug therapy , Tumor-Associated Macrophages/drug effects , Animals , Apoptosis/physiology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Disease Models, Animal , Female , Lymphatic Metastasis/pathology , Mice , Mice, Inbred BALB C , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Phagocytosis/drug effects , Phagocytosis/physiology , Triple Negative Breast Neoplasms/metabolism , Tumor Microenvironment/drug effects , Tumor Microenvironment/physiology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology
5.
EMBO Rep ; 22(12): e53200, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34633730

ABSTRACT

Astrocytes display extraordinary morphological complexity that is essential to support brain circuit development and function. Formin proteins are key regulators of the cytoskeleton; however, their role in astrocyte morphogenesis across diverse brain regions and neural circuits is unknown. Here, we show that loss of the formin protein Daam2 in astrocytes increases morphological complexity in the cortex and olfactory bulb, but elicits opposing effects on astrocytic calcium dynamics. These differential physiological effects result in increased excitatory synaptic activity in the cortex and increased inhibitory synaptic activity in the olfactory bulb, leading to altered olfactory behaviors. Proteomic profiling and immunoprecipitation experiments identify Slc4a4 as a binding partner of Daam2 in the cortex, and combined deletion of Daam2 and Slc4a4 restores the morphological alterations seen in Daam2 mutants. Our results reveal new mechanisms regulating astrocyte morphology and show that congruent changes in astrocyte morphology can differentially influence circuit function.


Subject(s)
Astrocytes , Microfilament Proteins/genetics , rho GTP-Binding Proteins/genetics , Formins , Morphogenesis , Olfactory Bulb/metabolism , Proteomics , Sodium-Bicarbonate Symporters
6.
J Chem Phys ; 154(12): 124115, 2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33810650

ABSTRACT

Single-beam spectrally controlled (SBSC) two-dimensional (2D) Raman spectroscopy is a unique 2D vibrational measurement technique utilizing trains of short pulses that are generated from a single broadband pulse by pulse shaping. This approach overcomes the difficulty of 2D Raman spectroscopy in dealing with small-signal extraction and avoids complicated low-order cascading effects, thus providing a new possibility for measuring the intramolecular and intermolecular modes of molecular liquids using fifth-order 2D Raman spectroscopy. Recently, for quantitatively investigating the mode-mode coupling mechanism, Hurwitz et al. [Opt. Express 28, 3803 (2020)] have developed a new pulse design for this measurement to separate the contributions of the fifth- and third-order polarizations, which are often overlapped in the original single-beam measurements. Here, we describe a method for simulating these original measurements and the new 2D Raman measurements on the basis of a second-order response function approach. We carry out full molecular dynamics simulations for carbon tetrachloride and liquid water using an equilibrium-nonequilibrium hybrid algorithm, with the aim of explaining the key features of the SBSC 2D Raman spectroscopic method from a theoretical point of view. The predicted signal profiles and intensities provide valuable information that can be applied to 2D spectroscopy experiments, allowing them to be carried out more efficiently.

7.
FASEB J ; 35(1): e21225, 2021 01.
Article in English | MEDLINE | ID: mdl-33337568

ABSTRACT

Studies of neuroglial interaction largely depend on cell-specific gene knockout (KO) experiments using Cre recombinase. However, genes known as glial-specific genes have recently been reported to be expressed in neuroglial stem cells, leading to the possibility that a glia-specific Cre driver results in unwanted gene deletion in neurons, which may affect sound interpretation. 2',3'-Cyclic nucleotide 3'-phosphodiesterase (CNP) is generally considered to be an oligodendrocyte (OL) marker. Accordingly, Cnp promoter-controlled Cre recombinase has been used to create OL-specific gene targeting mice. However, in this study, using Rosa26-tdTomato-reporter/Cnp-Cre mice, we found that many forebrain neurons and cerebellar Purkinje neurons belong to the lineages of Cnp-expressing neuroglial stem cells. To answer whether gene targeting by Cnp-Cre can induce neuron-autonomous defects, we conditionally deleted an essential autophagy gene, Atg7, in Cnp-Cre mice. The Cnp-Cre-mediated Atg7 KO mice showed extensive p62 inclusion in neurons, including cerebellar Purkinje neurons with extensive neurodegeneration. Furthermore, neuronal areas showing p62 inclusion in Cnp-Cre-mediated Atg7 KO mice overlapped with the neuronal lineage of Cnp-expressing neuroglial stem cells. Moreover, Cnp-Cre-mediated Atg7-KO mice did not develop critical defects in myelination. Our results demonstrate that a large population of central neurons are derived from Cnp-expressing neuroglial stem cells; thus, conditional gene targeting using the Cnp promoter, which is known to be OL-specific, can induce neuron-autonomous phenotypes.


Subject(s)
2',3'-Cyclic Nucleotide 3'-Phosphodiesterase/deficiency , Neurodegenerative Diseases/enzymology , Neuroglia/enzymology , Purkinje Cells/enzymology , Stem Cells/enzymology , 2',3'-Cyclic Nucleotide 3'-Phosphodiesterase/metabolism , Animals , Autophagy-Related Protein 7/genetics , Integrases/genetics , Integrases/metabolism , Mice , Mice, Knockout , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Neuroglia/pathology , Purkinje Cells/pathology , Stem Cells/pathology
8.
J Cell Sci ; 134(2)2021 01 25.
Article in English | MEDLINE | ID: mdl-33310913

ABSTRACT

Wnt signaling plays a critical role in development across species and is dysregulated in a host of human diseases. A key step in signal transduction is the formation of Wnt receptor signalosomes, during which a large number of components translocate to the membrane, cluster together and amplify downstream signaling. However, the molecular processes that coordinate these events remain poorly defined. Here, we show that Daam2 regulates canonical Wnt signaling via the PIP2-PIP5K axis through its association with Rac1. Clustering of Daam2-mediated Wnt receptor complexes requires both Rac1 and PIP5K, and PIP5K promotes membrane localization of these complexes in a Rac1-dependent manner. Importantly, the localization of Daam2 complexes and Daam2-mediated canonical Wnt signaling is dependent upon actin polymerization. These studies - in chick spinal cord and human and monkey cell lines - highlight novel roles for Rac1 and the actin cytoskeleton in the regulation of canonical Wnt signaling and define Daam2 as a key scaffolding hub that coordinates membrane translocation and signalosome clustering.


Subject(s)
Carrier Proteins , Wnt Signaling Pathway , Animals , Cell Line , Chickens , Cluster Analysis , Haplorhini , Humans , Mice , Microfilament Proteins , Phosphorylation , Spinal Cord/metabolism , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism , rho GTP-Binding Proteins
9.
Genes Dev ; 34(17-18): 1177-1189, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32792353

ABSTRACT

Dysregulation of the ubiquitin-proteasomal system (UPS) enables pathogenic accumulation of disease-driving proteins in neurons across a host of neurological disorders. However, whether and how the UPS contributes to oligodendrocyte dysfunction and repair after white matter injury (WMI) remains undefined. Here we show that the E3 ligase VHL interacts with Daam2 and their mutual antagonism regulates oligodendrocyte differentiation during development. Using proteomic analysis of the Daam2-VHL complex coupled with conditional genetic knockout mouse models, we further discovered that the E3 ubiquitin ligase Nedd4 is required for developmental myelination through stabilization of VHL via K63-linked ubiquitination. Furthermore, studies in mouse demyelination models and white matter lesions from patients with multiple sclerosis corroborate the function of this pathway during remyelination after WMI. Overall, these studies provide evidence that a signaling axis involving key UPS components contributes to oligodendrocyte development and repair and reveal a new role for Nedd4 in glial biology.


Subject(s)
Cell Differentiation , Microfilament Proteins/metabolism , Nedd4 Ubiquitin Protein Ligases/metabolism , Nerve Regeneration/genetics , Nervous System Diseases/genetics , Oligodendroglia/physiology , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , rho GTP-Binding Proteins/metabolism , Animals , Gene Expression Regulation, Developmental , Humans , Mice , Mice, Knockout , Multiple Sclerosis/physiopathology , Myelin Sheath/genetics , Nervous System Diseases/physiopathology , Oligodendroglia/cytology , Protein Stability , Ubiquitination/genetics
10.
Neuron ; 106(4): 589-606.e6, 2020 05 20.
Article in English | MEDLINE | ID: mdl-32169171

ABSTRACT

ACOX1 (acyl-CoA oxidase 1) encodes the first and rate-limiting enzyme of the very-long-chain fatty acid (VLCFA) ß-oxidation pathway in peroxisomes and leads to H2O2 production. Unexpectedly, Drosophila (d) ACOX1 is mostly expressed and required in glia, and loss of ACOX1 leads to developmental delay, pupal death, reduced lifespan, impaired synaptic transmission, and glial and axonal loss. Patients who carry a previously unidentified, de novo, dominant variant in ACOX1 (p.N237S) also exhibit glial loss. However, this mutation causes increased levels of ACOX1 protein and function resulting in elevated levels of reactive oxygen species in glia in flies and murine Schwann cells. ACOX1 (p.N237S) patients exhibit a severe loss of Schwann cells and neurons. However, treatment of flies and primary Schwann cells with an antioxidant suppressed the p.N237S-induced neurodegeneration. In summary, both loss and gain of ACOX1 lead to glial and neuronal loss, but different mechanisms are at play and require different treatments.


Subject(s)
Acyl-CoA Oxidase/genetics , Axons/enzymology , Nerve Degeneration/genetics , Neuroglia/enzymology , Animals , Axons/pathology , Drosophila , Humans , Mice , Mutation , Nerve Degeneration/enzymology , Neuroglia/pathology , Rats
11.
Article in English | MEDLINE | ID: mdl-29847212

ABSTRACT

Food-grade titanium dioxide (TiO2) is a common and widespread food additive in many processed foods, personal care products, and other industrial categories as it boosts the brightness and whiteness of colours. Although it is generally recognised as safe for humans, there is a growing interest in the health risks associated with its oral intake. This study quantified and identified TiO2 nanoparticles present in confectionery foods, which are children's favourite foods, with inductively coupled plasma optical emission spectrometry (ICP-OES) and transmission electron microscopy (TEM). A reliable digestion method using hot sulphuric acid and a digestion catalyst (K2SO4:CuSO4 = 9:1) was suggested for titanium analysis. Validations of the experimental method were quite acceptable in terms of linearity, recoveries, detection limits, and quantification limits. Of all the 88 analysed foods, TiO2 was detected in 19 products, all except three declared TiO2 in their labelling. The mean TiO2 content of candies, chewing gums, and chocolates were 0.36 mg g-1, 0.04 mg g-1, and 0.81 mg g-1, respectively. Whitish particles isolated from the confectionery foods were confirmed as TiO2 nanoparticles via TEM and energy dispersive X-ray spectroscopy (EDX), in which nanosized particles (<100 nm) were identified.


Subject(s)
Candy/analysis , Food Additives/analysis , Food Analysis , Marketing , Nanoparticles/analysis , Titanium/analysis , Humans , Microscopy, Electron, Transmission , Republic of Korea , Spectrophotometry, Atomic
12.
J Biol Chem ; 292(52): 21643-21652, 2017 12 29.
Article in English | MEDLINE | ID: mdl-29127200

ABSTRACT

Pressure overload-induced cardiac stress induces left ventricular hypertrophy driven by increased cardiomyocyte mass. The increased energetic demand and cardiomyocyte size during hypertrophy necessitate increased fuel and oxygen delivery and stimulate angiogenesis in the left ventricular wall. We have previously shown that the transcriptional regulator steroid receptor coactivator-2 (SRC-2) controls activation of several key cardiac transcription factors and that SRC-2 loss results in extensive cardiac transcriptional remodeling. Pressure overload in mice lacking SRC-2 induces an abrogated hypertrophic response and decreases sustained cardiac function, but the cardiomyocyte-specific effects of SRC-2 in these changes are unknown. Here, we report that cardiomyocyte-specific loss of SRC-2 (SRC-2 CKO) results in a blunted hypertrophy accompanied by a rapid, progressive decrease in cardiac function. We found that SRC-2 CKO mice exhibit markedly decreased left ventricular vasculature in response to transverse aortic constriction, corresponding to decreased expression of the angiogenic factor VEGF. Of note, SRC-2 knockdown in cardiomyocytes decreased VEGF expression and secretion to levels sufficient to blunt in vitro tube formation and proliferation of endothelial cells. During pressure overload, both hypertrophic and hypoxic signals can stimulate angiogenesis, both of which stimulated SRC-2 expression in vitro Furthermore, SRC-2 coactivated the transcription factors GATA-binding protein 4 (GATA-4) and hypoxia-inducible factor (HIF)-1α and -2α in response to angiotensin II and hypoxia, respectively, which drive VEGF expression. These results suggest that SRC-2 coordinates cardiomyocyte secretion of VEGF downstream of the two major angiogenic stimuli occurring during pressure overload bridging both hypertrophic and hypoxia-stimulated paracrine signaling.


Subject(s)
Nuclear Receptor Coactivator 2/metabolism , Angiogenesis Inducing Agents/metabolism , Angiotensin II/metabolism , Animals , Heart Ventricles/metabolism , Hypertrophy, Left Ventricular/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice , Mice, Knockout , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Neovascularization, Pathologic/metabolism , Paracrine Communication/physiology , Transcriptional Activation , Vascular Endothelial Growth Factor A/metabolism , Ventricular Remodeling
13.
Dev Biol ; 427(1): 61-71, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28514643

ABSTRACT

Yorkie (Yki), the transcriptional co-activator of the Hippo signaling pathway, has well-characterized roles in balancing apoptosis and cell division during organ growth control. Yki is also required in diverse tissue regenerative contexts. In most cases this requirement reflects its well-characterized roles in balancing apoptosis and cell division. Whether Yki has repair functions outside of the control of cell proliferation, death, and growth is not clear. Here we show that Yki and Scalloped (Sd) are required for epidermal wound closure in the Drosophila larval epidermis. Using a GFP-tagged Yki transgene we show that Yki transiently translocates to some epidermal nuclei upon wounding. Genetic analysis strongly suggests that Yki interacts with the known wound healing pathway, Jun N-terminal kinase (JNK), but not with Platelet Derived Growth Factor/Vascular-Endothelial Growth Factor receptor (Pvr). Yki likely acts downstream of or parallel to JNK signaling and does not appear to regulate either proliferation or apoptosis in the larval epidermis during wound repair. Analysis of actin structures after wounding suggests that Yki and Sd promote wound closure through actin regulation. In sum, we found that Yki regulates an epithelial tissue repair process independently of its previously documented roles in balancing proliferation and apoptosis.


Subject(s)
Apoptosis/physiology , Cell Proliferation/physiology , Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , Epidermis/physiopathology , Nuclear Proteins/metabolism , Trans-Activators/metabolism , Wound Healing , Animals , Animals, Genetically Modified , Apoptosis/genetics , Cell Proliferation/genetics , Drosophila Proteins/genetics , Drosophila Proteins/physiology , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Epidermis/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Immunohistochemistry , JNK Mitogen-Activated Protein Kinases/genetics , JNK Mitogen-Activated Protein Kinases/metabolism , Larva/genetics , Larva/metabolism , Larva/physiology , Microscopy, Confocal , Nuclear Proteins/genetics , RNA Interference , Signal Transduction/genetics , Signal Transduction/physiology , Time Factors , Trans-Activators/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factors/physiology , YAP-Signaling Proteins
14.
Cell Death Dis ; 8(5): e2786, 2017 05 11.
Article in English | MEDLINE | ID: mdl-28492538

ABSTRACT

Tumor necrosis factor (TNF) signaling is required for inflammatory nociceptive (pain) sensitization in Drosophila and vertebrates. Nociceptive sensitization in Drosophila larvae following UV-induced tissue damage is accompanied by epidermal apoptosis and requires epidermal-derived TNF/Eiger and the initiator caspase, Dronc. Major gaps remain regarding TNF function in sensitization, including the relationship between apoptosis/tissue damage and TNF production, the downstream signaling in this context, and the target genes that modulate nociceptive behaviors. Here, apoptotic cell death and thermal nociceptive sensitization are genetically and procedurally separable in a Drosophila model of UV-induced nociceptive sensitization. Activation of epidermal Dronc induces TNF-dependent but effector caspase-independent nociceptive sensitization in the absence of UV. In addition, knockdown of Dronc attenuated nociceptive sensitization induced by full-length TNF/Eiger but not by a constitutively soluble form. UV irradiation induced TNF production in both in vitro and in vivo, but TNF secretion into hemolymph was not sufficient to induce thermal nociceptive sensitization. Downstream mediators of TNF-induced sensitization included two TNF receptor-associated factors, a p38 kinase, and the transcription factor nuclear factor kappa B. Finally, sensory neuron-specific microarray analysis revealed downstream TNF target genes induced during thermal nociceptive sensitization. One of these, enhancer of zeste (E(z)), functions downstream of TNF during thermal nociceptive sensitization. Our findings suggest that an initiator caspase is involved in TNF processing/secretion during nociceptive sensitization, and that TNF activation leads to a specific downstream signaling cascade and gene transcription required for sensitization. These findings have implications for both the evolution of inflammatory caspase function following tissue damage signals and the action of TNF during sensitization in vertebrates.


Subject(s)
Apoptosis/physiology , Caspases/metabolism , Drosophila Proteins/metabolism , Membrane Proteins/metabolism , Nociception/physiology , Signal Transduction/physiology , Tumor Necrosis Factors/metabolism , Animals , Caspases/genetics , Drosophila Proteins/genetics , Drosophila melanogaster , Membrane Proteins/genetics , Tumor Necrosis Factors/genetics
15.
Elife ; 4: e10735, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26575288

ABSTRACT

Pain signaling in vertebrates is modulated by neuropeptides like Substance P (SP). To determine whether such modulation is conserved and potentially uncover novel interactions between nociceptive signaling pathways we examined SP/Tachykinin signaling in a Drosophila model of tissue damage-induced nociceptive hypersensitivity. Tissue-specific knockdowns and genetic mutant analyses revealed that both Tachykinin and Tachykinin-like receptor (DTKR99D) are required for damage-induced thermal nociceptive sensitization. Electrophysiological recording showed that DTKR99D is required in nociceptive sensory neurons for temperature-dependent increases in firing frequency upon tissue damage. DTKR overexpression caused both behavioral and electrophysiological thermal nociceptive hypersensitivity. Hedgehog, another key regulator of nociceptive sensitization, was produced by nociceptive sensory neurons following tissue damage. Surprisingly, genetic epistasis analysis revealed that DTKR function was upstream of Hedgehog-dependent sensitization in nociceptive sensory neurons. Our results highlight a conserved role for Tachykinin signaling in regulating nociception and the power of Drosophila for genetic dissection of nociception.


Subject(s)
Drosophila/physiology , Hedgehog Proteins/metabolism , Nociceptors/physiology , Signal Transduction , Tachykinins/metabolism , Action Potentials , Animals , Drosophila/radiation effects , Drosophila Proteins/metabolism , Electrophysiological Phenomena , Hot Temperature , Receptors, Neurotransmitter/metabolism
16.
Struct Dyn ; 2(5): 054102, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26798823

ABSTRACT

Recent developments in two-dimensional (2D) THz-Raman and 2D Raman spectroscopies have created the possibility for quantitatively investigating the role of many dynamic and structural aspects of the molecular system. We explain the significant points for properly simulating 2D vibrational spectroscopic studies of intermolecular modes using the full molecular dynamics approach, in particular, regarding the system size, the treatment of the thermostat, and inclusion of an Ewald summation for the induced polarizability. Moreover, using the simulation results for water employing various polarization functions, we elucidate the roles of permanent and induced optical properties in determining the 2D profiles of the signal.

17.
J Biol Chem ; 290(4): 2521-8, 2015 Jan 23.
Article in English | MEDLINE | ID: mdl-25505177

ABSTRACT

Calcium-permeable and thermosensitive transient receptor potential (TRP) channels mediate the nociceptive transduction of noxious temperature in Drosophila nociceptors. However, the underlying molecular mechanisms are not completely understood. Here we find that Subdued, a calcium-activated chloride channel of the Drosophila anoctamin family, functions in conjunction with the thermo-TRPs in thermal nociception. Genetic analysis with deletion and the RNAi-mediated reduction of subdued show that subdued is required for thermal nociception in nociceptors. Further genetic analysis of subdued mutant and thermo-TRP mutants show that they interact functionally in thermal nociception. We find that Subdued expressed in heterologous cells mediates a strong chloride conductance in the presence of both heat and calcium ions. Therefore, our analysis suggests that Subdued channels may amplify the nociceptive neuronal firing that is initiated by thermo-TRP channels in response to thermal stimuli.


Subject(s)
Chloride Channels/physiology , Drosophila Proteins/physiology , Drosophila melanogaster/physiology , Nociception , Nociceptors/physiology , Animals , Behavior, Animal , Chlorides/chemistry , Cloning, Molecular , HEK293 Cells , Humans , Mutation , Neurons/metabolism , Pain , RNA Interference , Transient Receptor Potential Channels/physiology
18.
Curr Biol ; 21(18): 1525-33, 2011 Sep 27.
Article in English | MEDLINE | ID: mdl-21906949

ABSTRACT

BACKGROUND: Nociceptive sensitization is a tissue damage response whereby sensory neurons near damaged tissue enhance their responsiveness to external stimuli. This sensitization manifests as allodynia (aversive withdrawal to previously nonnoxious stimuli) and/or hyperalgesia (exaggerated responsiveness to noxious stimuli). Although some factors mediating nociceptive sensitization are known, inadequacies of current analgesic drugs have prompted a search for additional targets. RESULTS: Here we use a Drosophila model of thermal nociceptive sensitization to show that Hedgehog (Hh) signaling is required for both thermal allodynia and hyperalgesia following ultraviolet irradiation (UV)-induced tissue damage. Sensitization does not appear to result from developmental changes in the differentiation or arborization of nociceptive sensory neurons. Genetic analysis shows that Hh signaling acts in parallel to tumor necrosis factor (TNF) signaling to mediate allodynia and that distinct transient receptor potential (TRP) channels mediate allodynia and hyperalgesia downstream of these pathways. We also demonstrate a role for Hh in analgesic signaling in mammals. Intrathecal or peripheral administration of cyclopamine (CP), a specific inhibitor of Sonic Hedgehog signaling, blocked the development of analgesic tolerance to morphine (MS) or morphine antinociception in standard assays of inflammatory pain in rats and synergistically augmented and sustained morphine analgesia in assays of neuropathic pain. CONCLUSIONS: We demonstrate a novel physiological role for Hh signaling, which has not previously been implicated in nociception. Our results also identify new potential therapeutic targets for pain treatment.


Subject(s)
Drosophila/physiology , Hedgehog Proteins/physiology , Nociception/physiology , Nociceptors/metabolism , Signal Transduction , Animals , Drosophila/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/physiology , Hedgehog Proteins/metabolism , Membrane Proteins/metabolism , Membrane Proteins/physiology , Temperature , Tumor Necrosis Factor-alpha/physiology
19.
Genetics ; 186(3): 943-57, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20813879

ABSTRACT

Robust mechanisms for tissue repair are critical for survival of multicellular organisms. Efficient cutaneous wound repair requires the migration of cells at the wound edge and farther back within the epidermal sheet, but the genes that control and coordinate these migrations remain obscure. This is in part because a systematic screening approach for in vivo identification and classification of postembryonic wound closure genes has yet to be developed. Here, we performed a proof-of-principle reporter-based in vivo RNAi screen in the Drosophila melanogaster larval epidermis to identify genes required for normal wound closure. Among the candidate genes tested were kinases and transcriptional mediators of the Jun N-terminal kinase (JNK) signaling pathway shown to be required for epithelial sheet migration during development. Also targeted were genes involved in actin cytoskeletal remodeling. Importantly, RNAi knockdown of both canonical and noncanonical members of the JNK pathway caused open wounds, as did several genes involved in actin cytoskeletal remodeling. Our analysis of JNK pathway components reveals redundancy among the upstream activating kinases and distinct roles for the downstream transcription factors DJun and DFos. Quantitative and qualitative morphological classification of the open wound phenotypes and evaluation of JNK activation suggest that multiple cellular processes are required in the migrating epidermal cells, including functions specific to cells at the wound edge and others specific to cells farther back within the epidermal sheet. Together, our results identify a new set of conserved wound closure genes, determine putative functional roles for these genes within the migrating epidermal sheet, and provide a template for a broader in vivo RNAi screen to discover the full complement of genes required for wound closure during larval epidermal wound healing.


Subject(s)
Drosophila melanogaster/cytology , Drosophila melanogaster/genetics , Gene Targeting , Genetic Testing , RNA Interference , Regulatory Sequences, Nucleic Acid/genetics , Wound Healing/genetics , Actins/metabolism , Animals , Base Sequence , Cytoskeleton/genetics , Drosophila melanogaster/enzymology , Enzyme Activation , Epidermis/metabolism , Epidermis/pathology , Gene Expression Regulation , Genes, Insect/genetics , Genes, Reporter , JNK Mitogen-Activated Protein Kinases/metabolism , Larva/cytology , Larva/enzymology , Larva/genetics , MAP Kinase Signaling System/genetics , Models, Biological , Time Factors , Transgenes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...