Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Front Microbiol ; 13: 865918, 2022.
Article in English | MEDLINE | ID: mdl-35633663

ABSTRACT

In the natural environment, most microorganisms live in mixed-species biofilms, in which the metabolism and growth of organisms are different from that in single-species biofilms. Adhesive bacteria and their biofilms on the surface of food processing equipment are the sources of cross-contamination, leading to the risk for humans. Slightly acidic electrolyzed water (SAEW) has been proposed as a novel sanitizer in the food and agriculture industry. In this study, we investigated the changes in the physical properties of SAEW under different conditions and the disinfection abilities of SAEW against spore-forming and non-spore-forming pathogens. Furthermore, we examined the disinfection abilities of SAEW after 12 months of shelf life on a mixed-species biofilm of Listeria monocytogenes Scott A and Staphylococcus aureus. The results showed that SAEW at 30 and 50 ppm achieved all-kill of the spore-forming pathogen Bacillus cereus within 30 s. Changes in the ACC and pH of the produced SAEW were generally affected by the storage conditions. Both spore-forming and non-spore-forming pathogens were not detected under treatment with 50 ppm SAEW for 5 min under HDPE-closed conditions throughout the whole storage period. Moreover, 25 mg/L SAEW can inactivate L. monocytogenes Scott A and S. aureus biofilm cells in ~2.45 and 2.57 log CFU/mL in biofilms within 5-min treatment. However, the decline of the two bacteria in the mixed-species biofilm was 1.95 and 1.43 log CFU/mL, respectively. The changes in the cell membrane permeability of the mixed-species biofilm under treatment with SAEW were observed by using atomic force microscopy and confocal laser scanning microscopy. L. monocytogenes Scott A was more sensitive to SAEW in the mixed-species biofilm cells. These findings exhibited strong antibiofilm activities of SAEW in impairing biofilm cell membranes, decreasing cell density, and eliminating biofilm, which suggest that SAEW is an excellent antibacterial agent in the food processing industries.

2.
Front Microbiol ; 13: 816671, 2022.
Article in English | MEDLINE | ID: mdl-35308354

ABSTRACT

Slightly acidic electrolyzed water (SAEW) has been recently proposed as a novel promising sanitizer and cleaner in the agricultural and food industries. However, several factors, including water hardness, were considered to strongly affect the physical properties and sanitization efficacy of SAEW. To study the effect of water hardness on the SAEW production, we evaluated the production properties and sanitization effect of SAEW, which was generated from water sources in 16 representatively geographical locations of South Korea. The results showed that the hardness of water sources from Kangwon-do, Jeollanam-do, and Daegu was 22-41 ppm; that from Busan, Gyeongnam-do, Gwangju Bukgu was 80-443 ppm, and that from seven other locations was 41-79 ppm. SAEW is produced from water hardness less than 50 ppm and greater than 80 ppm was beyond the accepted pH range (5.0-6.5). Notably, high-hardness water (>80 ppm) containing 5% HCl could be used to produce SAEW with accepted pH. The SAEW generated from low-hardness water with additions of 2% HCl and 2 M NaCl at 7 A showed accepted pH and higher germicidal effect. Furthermore, SAEW with the available chlorine concentration of 27-41 mg/L for 1 min was sufficient to completely inactivate non-spore-forming foodborne pathogens. Sanitization efficacy was not markedly affected by storage conditions for SAEW at 40 ppm. Our results demonstrated that the degree of water hardness is an important factor in the production of SAEW, which would provide a foundation for commercial application of SAEW.

3.
Nanomaterials (Basel) ; 11(6)2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34201071

ABSTRACT

The issue of medication noncompliance has resulted in major risks to public safety and financial loss. The new omnipresent medicine enabled by the Internet of things offers fascinating new possibilities. Additionally, an in-home healthcare station (IHHS), it is necessary to meet the rapidly increasing need for routine nursing and on-site diagnosis and prognosis. This article proposes a universal and preventive strategy to drug management based on intelligent and interactive packaging (I2Pack) and IMedBox. The controlled delamination material (CDM) seals and regulates wireless technologies in novel medicine packaging. As such, wearable biomedical sensors may capture a variety of crucial parameters via wireless communication. On-site treatment and prediction of these critical factors are made possible by high-performance architecture. The user interface is also highlighted to make surgery easier for the elderly, disabled, and patients. Land testing incorporates and validates an approach for prototyping I2Pack and iMedBox. Additionally, sustainability, increased product safety, and quality standards are crucial throughout the life sciences. To achieve these standards, intelligent packaging is also used in the food and pharmaceutical industries. These technologies will continuously monitor the quality of a product and communicate with the user. Data carriers, indications, and sensors are the three most important groups. They are not widely used at the moment, although their potential is well understood. Intelligent packaging should be used in these sectors and the functionality of the systems and the values presented in this analysis.

SELECTION OF CITATIONS
SEARCH DETAIL