Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chin J Integr Med ; 27(10): 752-759, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34319505

ABSTRACT

OBJECTIVE: To determine the effect of Zanthoxylum piperitum extracet (ZPE) on apoptosis and analyze anticancer substances in ZPE, changes in proteins related to apoptosis, and pathological changes in tumors in mouse. METHODS: Fifteen 4-week-old female BALB/c nu/nu mice were divided into 3 groups depending on ZPE dose, with 5 in each group. AGS gastric carcinoma cells (1 × 106 cells/200 µL) were subcutaneously injected into the flank of each mouse. One week after the injection of AGS cells, ZPE was administered to the skin tissue [10 or 50 mg/(kg·d)] in the low- and high-dose groups, respectively for 20 days. Control animals were injected with vehicle only. After 3 weeks, the tumor was extracted and carried out for immunohistochemistry, the tendency of apoptosis and p53 in the body was checked using TdT-mediated dUTP nick-end labeling (TUNEL) assay. For 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, annexin V dead cell staining, cell cycle arrest and Western blotting, AGS gastric carcinoma cells were incubated with various concentrations of ZPE for 24 h. Cell survival rates were analyzed by MTT assays. Apoptosis was analyzed using annexin V dead cell staining and cell cycle arrest and measured using Muse cell analyzer. RESULTS: High performance liquid chromatography (HPLC) analysis showed that ZPE contained organic sulfur compounds such as alliin and S-allylcysteine. MTT assay results revealed that ZPE (10-85 µ g/mL) could effectively inhibit the growth of AGS gastric cancer cells at higher concentrations (P<0.05, P<0.01). The annexin V & dead cell staining assay and cell cycle arrest assay confirmed a dose-dependent increase in the apoptosis rate and G1 phase in ZPE (10-70 µ g/mL) groups. ZPE decreased the expression of anti-apoptotic proteins (p-Akt, p-MDM2, Bcl-2), while increased pro-apoptotic proteins (cleaved PARP, p53, pro-Caspase 3, Bax). TUNEL assays revealed an increase in cell apoptosis. Immunohistochemistry staining confirmed the involvement of p53. CONCLUSION: ZPE decreases AGS cell proliferation and induces apoptosis by inhibiting Akt and MDM2 expression.


Subject(s)
Stomach Neoplasms , Zanthoxylum , Animals , Apoptosis , Cell Line, Tumor , Cell Proliferation , Female , Mice , Mice, Inbred BALB C , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Stomach Neoplasms/drug therapy , Tumor Suppressor Protein p53/metabolism , Zanthoxylum/metabolism
3.
Sci Rep ; 9(1): 16903, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31729428

ABSTRACT

The Trapa japonica fruit is a natural plant growing in ponds with its roots in the mud. It has long been used as a home remedy for many diseases; however, a major problem with this kind of natural extract is the multicomponents-multitargets for diseases. Such problems make it difficult to identify the mechanism of action. Another problem is quality control and consistency. The aim of this research was to isolate a single bioactive compound (peptide) derived from the Trapa japonica fruit. The research was conducted with various experimental techniques, such as fermentation and liquid chromatography, to isolate a peptide. We isolated the AC 2 peptide from Trapa japonica fruit and found it to be promising on human dermal papilla cells. Dihydrotestosterone (DHT) stresses human dermal papilla cells and is a major cause of hair loss resulting from hormones and environmental factors. The purpose of this research was to develop an understanding of the mechanism by which the AC 2 peptide rescues dihydrotestosterone (DHT)-treated human dermal papilla cells. We explored the effects of the AC 2 peptide on the cell biological functions of human dermal papilla cells (HDPs). HDPs were treated with the AC 2 peptide and DHT. Then, a cytotoxicity assay, flow cytometry, Western blot, immunoprecipitation, and 3D cell culture for immunohistochemistry were conducted to investigate the mTORC1 pathway and suppression of autophagy and apoptosis. In addition, we also synthesized the AC2 peptide as an alternative to the expensive and difficult isolation and purification procedures and confirmed its potential in biomedical applications. We also validated the effects of the synthetic AC2 peptide as well as the isolated and purified AC2 peptide and established their similarity. Although extensive research has been carried out on natural extracts, few single studies have isolated and separated a bioactive peptide (single compound).


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Bacillus/physiology , Dihydrotestosterone/pharmacology , Hair Follicle/drug effects , Lythraceae/chemistry , Plant Extracts/pharmacology , Alopecia/metabolism , Alopecia/pathology , Alopecia/prevention & control , Cells, Cultured , Cytoprotection/drug effects , Dermis/cytology , Dermis/drug effects , Dermis/metabolism , Fruit/chemistry , Hair Follicle/cytology , Hair Follicle/metabolism , Humans , Lythraceae/microbiology , Mechanistic Target of Rapamycin Complex 1/metabolism , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Plant Extracts/chemistry , Scalp/cytology , Scalp/drug effects , Signal Transduction/drug effects
4.
Front Oncol ; 9: 406, 2019.
Article in English | MEDLINE | ID: mdl-31192119

ABSTRACT

Lung cancer is one of the leading causes of death, and mortality rates have steadily been increasing. Recently, several studies were conducted to develop novel, physiologically active compounds from medicinal plant extracts. Several plant-derived extracts and molecules regulate and inhibit signaling molecules associated with the growth and proliferation of cancer cells. Euryale ferox salisb is a medicinal plant that is effective against different types of cancers. In this study, we investigated the apoptotic effects of E. ferox salisb extract (ESE) in A549 lung cancer cells, exerted by the inhibition of the Akt protein and activation of the p53 protein. Our results show that ESE induces apoptosis via the regulation of mitochondrial outer membrane potential and generation of reactive oxygen species (ROS). We demonstrate that apoptosis is induced in a p53-dependent manner when cells are treated with pifithrin-α (a p53 inhibitor) and LY294002 (an Akt inhibitor). The apoptotic effects from ESE were observed in vivo in Balb/c-nu mice bearing A549 xenografts. Altogether, these results suggest that E. ferox salisb extracts exert anti-cancer effects in a p53-dependent manner.

5.
BMC Complement Altern Med ; 19(1): 104, 2019 May 14.
Article in English | MEDLINE | ID: mdl-31088549

ABSTRACT

BACKGROUND: Despite advances in medical treatments, the proportion of the population suffering from alopecia is increasing, creating a need for new treatments to control hair loss and prevent balding. Treatments based on plant-derived compounds could potentially prevent hair loss. Human hair follicle dermal papilla (HDP) cells, a type of specialized fibroblast in the hair bulb, play an essential role in controlling hair growth and in conditions such as androgenic alopecia. We examined the effect of Bacillus/Trapa japonica fruit ferment filtrate extracts (TJFs) on HDP cells to determine whether activation of the Akt/ERK/GSK-3ß signaling pathway improved HDP cell proliferation. METHODS: We prepared TJFs using various methods. The extract properties were analyzed using WST-1, Lowry, and cell migration assays as well as immunofluorescence staining. We also determined the cell cycle stage and performed western blotting and an in ovo chick chorioallantoic membrane assay. Last, we constructed an organotypic three-dimensional cell culture model for immunohistochemical use. RESULTS: Our study confirmed that the TJFs contained numerous peptides and five unknown fractions. The TJFs stimulated HDP cell proliferation and migration via the Akt/ERK/GSK-3ß signaling pathway. To verify that the Akt/ERK/GSK-3ß pathway affected HDP cell proliferation, we treated HDP cells with LY294002 (an Akt inhibitor), BIO (a GSK-3ß inhibitor), and PD98059 (an ERK inhibitor). The TJFs also induced cell cycle progression, inhibited type І 5α-reductase, decreased apoptosis, and enhanced angiogenesis (vascular expansion). In addition to these signaling pathways, proteins including insulin-like growth factor-1 and keratinocyte growth factor, stimulating hair growth, were detected in the three-dimensional cell culture model. CONCLUSIONS: Our results confirmed that TJFs enhance HDP cell proliferation via the Akt/ERK/GSK-3ß signaling pathway, suggesting a potential treatment for alopecia.


Subject(s)
Bacillus/metabolism , Cell Proliferation/drug effects , Lythraceae/chemistry , MAP Kinase Signaling System/drug effects , Plant Extracts , Animals , Apoptosis/drug effects , Cell Cycle/drug effects , Cells, Cultured , Chickens , Chorioallantoic Membrane/blood supply , Chorioallantoic Membrane/drug effects , Dermis/cytology , Fermentation , Fruit/chemistry , Hair Follicle/cytology , Humans , Lythraceae/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...