Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Mol Med ; 55(10): 2238-2247, 2023 10.
Article in English | MEDLINE | ID: mdl-37779146

ABSTRACT

Histone acetylation involves the transfer of two-carbon units to the nucleus that are embedded in low-concentration metabolites. We found that lactate, a high-concentration metabolic byproduct, can be a major carbon source for histone acetylation through oxidation-dependent metabolism. Both in cells and in purified nuclei, 13C3-lactate carbons are incorporated into histone H4 (maximum incorporation: ~60%). In the purified nucleus, this process depends on nucleus-localized lactate dehydrogenase (LDHA), knockout (KO) of which abrogates incorporation. Heterologous expression of nucleus-localized LDHA reverses the KO effect. Lactate itself increases histone acetylation, whereas inhibition of LDHA reduces acetylation. In vitro and in vivo settings exhibit different lactate incorporation patterns, suggesting an influence on the microenvironment. Higher nuclear LDHA localization is observed in pancreatic cancer than in normal tissues, showing disease relevance. Overall, lactate and nuclear LDHA can be major structural and regulatory players in the metabolism-epigenetics axis controlled by the cell's own status or the environmental status.


Subject(s)
Histones , Lactic Acid , Histones/metabolism , Lactic Acid/metabolism , Acetylation , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/metabolism , Epigenesis, Genetic
2.
Blood Adv ; 7(13): 3155-3168, 2023 07 11.
Article in English | MEDLINE | ID: mdl-36809797

ABSTRACT

Acute myeloid leukemia (AML) generally has an unsatisfactory prognosis despite the recent introduction of new regimens, including targeted agents and antibodies. To find a new druggable pathway, we performed integrated bioinformatic pathway screening on large OHSU and MILE AML databases, discovered the SUMOylation pathway, and validated it independently with an external data set (totaling 2959 AML and 642 normal sample data). The clinical relevance of SUMOylation in AML was supported by its core gene expression which is correlated with patient survival, European LeukemiaNet 2017 risk classification, and AML-relevant mutations. TAK-981, a first-in-class SUMOylation inhibitor currently under clinical trials for solid tumors, showed antileukemic effects with apoptosis induction, cell-cycle arrest, and induction of differentiation marker expression in leukemic cells. It exhibited potent nanomolar activity, often stronger than that of cytarabine, which is part of the standard of care. TAK-981's utility was further demonstrated in in vivo mouse and human leukemia models as well as patient-derived primary AML cells. Our results also indicate direct and cancer cell-inherent anti-AML effects by TAK-981, different from the type 1 interferon and immune-dependent mechanism in a previous solid tumor study. Overall, we provide a proof-of-concept for SUMOylation as a new targetable pathway in AML and propose TAK-981 as a promising direct anti-AML agent. Our data should prompt studies on optimal combination strategies and transitions to clinical trials in AML.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Animals , Mice , Humans , Apoptosis , Sumoylation , Cell Proliferation , Antineoplastic Agents/therapeutic use , Leukemia, Myeloid, Acute/genetics
3.
Theranostics ; 13(2): 438-457, 2023.
Article in English | MEDLINE | ID: mdl-36632231

ABSTRACT

Rationale: Despite growing evidence for mitochondria's involvement in cancer, the roles of specific metabolic components outside the respiratory complex have been little explored. We conducted metabolomic studies on mitochondrial DNA (mtDNA)-deficient (ρ0) cancer cells with lower proliferation rates to clarify the undefined roles of mitochondria in cancer growth. Methods and results: Despite extensive metabolic downregulation, ρ0 cells exhibited high glycerol-3-phosphate (G3P) level, due to low activity of mitochondrial glycerol-3-phosphate dehydrogenase (GPD2). Knockout (KO) of GPD2 resulted in cell growth suppression as well as inhibition of tumor progression in vivo. Surprisingly, this was unrelated to the conventional bioenergetic function of GPD2. Instead, multi-omics results suggested major changes in ether lipid metabolism, for which GPD2 provides dihydroxyacetone phosphate (DHAP) in ether lipid biosynthesis. GPD2 KO cells exhibited significantly lower ether lipid level, and their slower growth was rescued by supplementation of a DHAP precursor or ether lipids. Mechanistically, ether lipid metabolism was associated with Akt pathway, and the downregulation of Akt/mTORC1 pathway due to GPD2 KO was rescued by DHAP supplementation. Conclusion: Overall, the GPD2-ether lipid-Akt axis is newly described for the control of cancer growth. DHAP supply, a non-bioenergetic process, may constitute an important role of mitochondria in cancer.


Subject(s)
Glycerolphosphate Dehydrogenase , Mitochondria , Neoplasms , Proto-Oncogene Proteins c-akt , Energy Metabolism , Ethers/metabolism , Glycerolphosphate Dehydrogenase/genetics , Glycerolphosphate Dehydrogenase/metabolism , Mitochondria/enzymology , Proto-Oncogene Proteins c-akt/metabolism , Animals , Mice , Neoplasms/enzymology , Neoplasms/pathology , Humans
4.
Anal Chem ; 95(2): 1184-1192, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36602057

ABSTRACT

Early diagnosis of hepatocellular carcinoma (HCC) is difficult; the lack of convenient biomarker-based diagnostic modalities renders high-risk HCC patients burdened by life-long periodical examinations. Here, a new chemical biopsy approach was developed for noninvasive diagnosis of HCC using urine samples. Bioinformatic screening for tumor suppressors yielded glycine N-methyltransferase (GNMT) as a biomarker with clinical relevance to HCC tumorigenesis. A liquid chromatography-mass spectrometry (LC-MS)-based chemical biopsy detecting nonradioactive 13C-sarcosine from 13C-glycine was designed to noninvasively assess liver GNMT activity extrahepatically. 13C-Sarcosine showed a strong correlation with GNMT in normal and cancerous liver cells. In an autochthonous animal model developing visible cancer nodules at 17 weeks, the urinary 13C-sarcosine chemical biopsy exhibited notable changes as early as 8 weeks, showing significant correlations with liver GNMT and molecular pathological changes. Our chemical biopsy approach should facilitate early and noninvasive diagnosis of HCC, with direct relevance to tumorigenesis, which can be straightforwardly applied to other diseases.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Liver Neoplasms/diagnosis , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/pathology , Glycine N-Methyltransferase , Sarcosine , Liver/pathology , Cell Transformation, Neoplastic/pathology , Carcinogenesis/pathology
5.
Biochem Biophys Res Commun ; 610: 182-187, 2022 06 25.
Article in English | MEDLINE | ID: mdl-35468422

ABSTRACT

Rv1211 is a conserved hypothetical protein in Mycobacterium tuberculosis and is required for the growth and pathogenesis of the bacteria. The protein has been suggested as a calmodulin-like calcium-binding protein with an EF-hand motif and as a target of trifluoperazine, a calmodulin antagonist in eukaryotes that inhibits mycobacterial growth. Here, we expressed the recombinant protein of Rv1211 and performed structural and biochemical studies of Rv1211 and its interaction with Ca2+ or trifluoperazine. Surprisingly, Rv1211 exhibited an elution property typical of a natively unfolded protein. Subsequent circular dichroism experiments with temperature elevation and trifluoroethanol treatment showed that Rv1211 has unfolded structure. Additional NMR experiment confirmed the unfolded state of the protein and further showed that it does not bind to Ca2+. Still, Rv1211 did bind to trifluoperazine, as evidenced by the two-dimensional NMR spectra of 15N-labeled Rv1211. However, there were no peak shifts upon binding, showing that Rv1211 retained its unfolded state even after the trifluoperazine binding. The residues involved in the binding were clustered in the C-terminal region, as identified by the sequence assignment. Isothermal titration calorimetry showed that the Kd of trifluoperazine-Rv1211 binding is 41 µM and that the stoichiometry is 1 : 2 (Rv1211: trifluoperazine). Our results argue against the suggestion of Rv1211 as a Ca2+-binding calmodulin-like protein, and show that Rv1211 is a natively unfolded protein that binds to trifluoperazine. In addition, our results suggest the evidence of the "Fuzziness" in the Rv1211-trifluoperazine interaction that differs from the conventional binding-induced folding of natively unfolded proteins.


Subject(s)
Intrinsically Disordered Proteins , Mycobacterium tuberculosis , Calcium/metabolism , Calmodulin/metabolism , EF Hand Motifs , Intrinsically Disordered Proteins/metabolism , Mycobacterium tuberculosis/metabolism , Trifluoperazine/chemistry , Trifluoperazine/pharmacology
6.
Chem Sci ; 12(13): 4958-4962, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-34168765

ABSTRACT

Metabolomic isotopic tracing can provide flux information useful for understanding drug mechanisms. For that, NMR has the unique advantage of giving positional isotope enrichment information, but the current 13C 1D NMR approach suffers from low sensitivity and high overlaps. We developed a new 2D heteronuclear NMR experiment incorporating J-scaling and distortion-free elements that allows for quantitative analysis of multiplets with high sensitivity and resolution. When applied to an old chemotherapeutic drug, the approach provided a quantitative estimation of TCA-cycle turns, confirming the conventional mechanism of its mitochondrial metabolic enhancement. Additionally, the approach identified a new mechanism of the higher contribution of the pentose phosphate pathway to serine synthesis in the cytosolic compartment, possibly explaining the broad pharmacological activities of the drug. Our approach may prove beneficial in helping to find new usages or metabolic mechanisms of other drugs.

SELECTION OF CITATIONS
SEARCH DETAIL
...