Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters











Publication year range
1.
Genes Genomics ; 46(7): 733-742, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38700830

ABSTRACT

BACKGROUND: Insects encounter various environmental stresses, in response to which they generate reactive oxygen species (ROS). Superoxide dismutase (SOD) is an antioxidant metalloenzyme that scavenges superoxide radicals to prevent oxidative damage. OBJECTIVE: To investigate expressions of SODs under oxidative stress in Tenebrio molitor. METHODS: Here, we investigated the transcriptional expression of SODs by pesticide and heavy metals in Tenebrio moltior. First, we searched an RNA-Seq database for T. molitor SOD (TmSOD) genes and identified two SOD isoforms (TmSOD1-iso1 and iso2). We examined their activities under developmental stage, tissue-specific, and various types (pesticide and heavy metal) of oxidative stress by using qPCR. RESULTS: Our results revealed two novel forms of TmSODs. These TmSODs had a copper/zinc superoxide dismutase domain, active site, Cu2+ binding site, Zn2+ binding site, E-class dimer interface, and P-class dimer interface. TmSODs (TmSOD1-iso1 and iso2) were expressed in diverse developmental phases and tissues. Pesticides and heavy metals caused an upregulation of these TmSODs. CONCLUSION: Our findings suggest that the two TmSODs have different functions in T. molitor, providing insights into the detoxification ability of T. molitor.


Subject(s)
Oxidative Stress , Superoxide Dismutase , Tenebrio , Animals , Tenebrio/genetics , Tenebrio/enzymology , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/chemistry , Metals, Heavy/metabolism , Computer Simulation , Pesticides/metabolism
2.
Genes Genomics ; 46(7): 851-870, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38809491

ABSTRACT

BACKGROUND: The Bradybaenidae snail Karaftohelix adamsi is endemic to Korea, with the species tracked from Island Ulleung in North Gyeongsang Province of South Korea. K. adamsi has been classified under the Endangered Wildlife Class II species of Korea and poses a severe risk of extinction following habitat disturbances. With no available information at the DNA (genome) or mRNA (transcriptome) level for the species, conservation by utilizing informed molecular resources seems difficult. OBJECTIVE: In this study, we used the Illumina short-read sequencing and Trinity de novo assembly to draft the reference transcriptome of K. adamsi. RESULTS: After assembly, 13,753 unigenes were obtained of which 10,511 were annotated to public databases (a maximum of 10,165 unigenes found homologs in PANM DB). A total of 6,351, 3,535, 358, and 3,407 unigenes were ascribed to the functional categories under KOG, GO, KEGG, and IPS, respectively. The transcripts such as the HSP 70, aquaporin, TLR, and MAPK, among others, were screened as putative functional resources for adaptation. DNA transposons were found to be thickly populated in comparison to retrotransposons in the assembled unigenes. Further, 2,164 SSRs were screened with the promiscuous presence of dinucleotide repeats such as AC/GT and AG/CT. CONCLUSION: The transcriptome-guided discovery of molecular resources in K. adamsi will not only serve as a basis for functional genomics studies but also provide sustainable tools to be utilized for the protection of the species in the wild. Moreover, the development of polymorphic SSRs is valuable for the identification of species from newer habitats and cross-species genotyping.


Subject(s)
Endangered Species , Microsatellite Repeats , Snails , Transcriptome , Animals , Microsatellite Repeats/genetics , Snails/genetics , Transcriptome/genetics , Republic of Korea , Molecular Sequence Annotation , Genetic Fitness
3.
Genes Genomics ; 46(5): 601-611, 2024 05.
Article in English | MEDLINE | ID: mdl-38546934

ABSTRACT

Human advancements in agriculture, urbanization, and industrialization have led to various forms of environmental pollution, including heavy metal pollution. Insects, as highly adaptable organisms, can survive under various environmental stresses, which induce oxidative damage and impair antioxidant systems. To investigate the peroxidase (POX) family in Tenebrio molitor, we characterized two POXs, namely TmPOX-iso1 and TmPOX-iso2. The full-length cDNA sequences of TmPox-iso1 and TmPox-iso2 respectively consisted of an open reading frame of 1815 bp encoding 605 amino acids and an open reading frame of 2229 bp encoding 743 amino acids. TmPOX-iso1 and TmPOX-iso2 homologs were found in five distinct insect orders. In the phylogenetic tree analysis, TmPOX-iso1 was clustered with the predicted POX protein of T. castaneum, and TmPOX-iso2 was clustered with the POX precursor protein of T. castaneum. During development, the highest expression level of TmPox-iso1 was observed in the pre-pupal stage, while that of TmPox-iso2 expression were observed in the pre-pupal and 4-day pupal stages. TmPox-iso1 was primarily expressed in the early and late larval gut, while TmPox-iso2 mRNA expression was higher in the fat bodies and Malpighian tubules. In response to cadmium chloride treatment, TmPox-iso1 expression increased at 3 hours and then declined until 24 hours, while in the zinc chloride-treated group, TmPox-iso1 expression peaked 24 hours after the treatment. Both treated groups showed increases in TmPox-iso2 expression 24 hours after the treatments.


Subject(s)
Tenebrio , Animals , Humans , Tenebrio/genetics , Peroxidases/genetics , Phylogeny , Proteins/genetics , Amino Acids/genetics
4.
Sci Rep ; 13(1): 18914, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37919359

ABSTRACT

Mealworms beetles, Tenebrio molitor, are the limelight next-generation food for humans due to their high nutrient contents. Since Tenebrio molitor is used as feed for pets and livestock in addition to their ability to decompose polystyrene and plastic waste, it is recognized as an insect with an industrial core value. Therefore, it is important to study the immune mechanism related to the development and infection of mealworms for mass breeding purposes. The immune deficiency (Imd) signaling is one of the main pathways with pivotal roles in the production of antimicrobial peptides (AMPs). Transforming growth factor-ß activated kinase (TAK1) is one of the Imd pathway components, forms a complex with TAK1 binding protein 2 (TAB2) to ultimately help activate the transcription factor Relish and eventually induce host to produce AMPs. Relatively, little has been revealed about TAK1 in insect models, especially in the T. molitor. Therefore, this study was conducted to elucidate the function of TmTak1 in T. molitor. Our results showed that the highest and lowest mRNA expression of TmTak1 were found in egg and young larvae respectively. The tissue-specific expression patterns were reported in the gut of T. molitor larvae and the fat bodies of adults. Systemic microbial challenge illustrated TmTak1 high expression following the fungal infection in all dissected tissues except for the whole body. However, silencing TmTak1 experiments showed that the survivability of T. molitor larvae affected significantly following Escherichia coli infection. Accordingly, AMP induction after TmTak1 knock down was mainly reported in the integument and the fat bodies.


Subject(s)
Coleoptera , Tenebrio , Animals , Humans , Plant Breeding , Coleoptera/metabolism , Larva/genetics , Gene Expression Regulation , Adaptor Proteins, Signal Transducing/metabolism
5.
Parasit Vectors ; 16(1): 367, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37848984

ABSTRACT

BACKGROUND: Ticks are ectoparasites capable of directly damaging their hosts and transmitting vector-borne diseases. The ixodid tick Haemaphysalis flava has a broad distribution that extends from East to South Asia. This tick is a reservoir of severe fever with thrombocytopenia syndrome virus (SFTSV) that causes severe hemorrhagic disease, with cases reported from China, Japan and South Korea. Recently, the distribution of H. flava in South Korea was found to overlap with the occurrence of SFTSV. METHODS: This study was undertaken to discover the molecular resources of H. flava female ticks using the Illumina HiSeq 4000 system, the Trinity de novo sequence assembler and annotation against public databases. The locally curated Protostome database (PANM-DB) was used to screen the putative adaptation-related transcripts classified to gene families, such as angiotensin-converting enzyme, aquaporin, adenylate cyclase, AMP-activated protein kinase, glutamate receptors, heat shock proteins, molecular chaperones, insulin receptor, mitogen-activated protein kinase and solute carrier family proteins. Also, the repeats and simple sequence repeats (SSRs) were screened from the unigenes using RepeatMasker (v4.0.6) and MISA (v1.0) software tools, followed by the designing of SSRs flanking primers using BatchPrimer 3 (v1.0) software. RESULTS: The transcriptome produced a total of 69,822 unigenes, of which 46,175 annotated to the homologous proteins in the PANM-DB. The unigenes were also mapped to the EuKaryotic Orthologous Groups (KOG), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) specializations. Promiscuous presence of protein kinase, zinc finger (C2H2-type), reverse transcriptase, and RNA recognition motif domains was observed in the unigenes. A total of 3480 SSRs were screened, of which 1907 and 1274 were found as tri- and dinucleotide repeats, respectively. A list of primer sequences flanking the SSR motifs was detailed for validation of polymorphism in H. flava and the related tick species. CONCLUSIONS: The reference transcriptome information on H. flava female ticks will be useful for an enriched understanding of tick biology, its competency to act as a vector and the study of species diversity related to disease transmission.


Subject(s)
Gene Expression Profiling , Ixodidae , Female , Animals , Molecular Sequence Annotation , Transcriptome , Genome , Ixodidae/genetics , Microsatellite Repeats
6.
Genes Genomics ; 45(8): 969-987, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37405596

ABSTRACT

Transcriptome studies for conservation of endangered mollusks is a proactive approach towards managing threats and uncertainties facing these species in natural environments. The population of these species is declining due to habitat destruction, illicit wildlife trade, and global climate change. These activities risk the free movement of species across the wild landscape, loss of breeding grounds, and restrictions in displaying the physiological attributes so crucial for faunal welfare. Gastropods face the most negative ecological effects and have been enlisted under Korea's protective species consortium based on their population dynamics in the last few years. Moreover, with the genetic resources restricted for such species, conservation by informed planning is not possible. This review provides insights into the activities under the threatened species initiative of Korea with special reference to the transcriptome assemblies of endangered mollusks. The gastropods such as Ellobium chinense, Aegista chejuensis, Aegista quelpartensis, Incilaria fruhstorferi, Koreanohadra kurodana, Satsuma myomphala, and Clithon retropictus have been represented. Moreover, the transcriptome summary of bivalve Cristaria plicata and Caenogastropoda Charonia lampas sauliae is also discussed. Sequencing, de novo assembly, and annotation identified transcripts or homologs for the species and, based on an understanding of the biochemical and molecular pathways, were ascribed to predictive gene function. Mining for simple sequence repeats from the transcriptome have successfully assisted genetic polymorphism studies. A comparison of the transcriptome scheme of Korean endangered mollusks with the genomic resources of other endangered mollusks have been discussed with homologies and analogies for dictating future research.


Subject(s)
Gastropoda , Transcriptome , Animals , Transcriptome/genetics , Endangered Species , Gastropoda/genetics , Genome , Republic of Korea
7.
Dev Comp Immunol ; 147: 104761, 2023 10.
Article in English | MEDLINE | ID: mdl-37331676

ABSTRACT

Toll and IMD pathways regulate antimicrobial innate immune responses in insect model systems. The transcriptional activation of antimicrobial peptides (AMPs) confers humoral immunity in the host against invaded pathogens. The IKK kinase complex (IKKα, IKKß, and the regulatory subunit IKKγ/NEMO) centrally regulates the NF-κB response to various stimuli. It triggers an appropriate antimicrobial immune response in the host. In this study, a TmIKKß (or TmIrd5) homolog was screened from the RNA-seq database of the coleopteran beetle, Tenebrio molitor. A single exon characterizes the TmIKKß gene, and the open reading frame (ORF) comprises of 2112 bp that putatively encodes a polypeptide of 703 amino acid residues. TmIKKß contains a serine/threonine kinase domain and is phylogenetically close to Tribolium castaneum IKKß homolog (TcIKKß). TmIKKß transcripts were highly expressed in the early pupal (P1) and adult (A5) stages. Among the tissues, TmIKKß showed higher expression in the integument of the last instar larvae and the fat body and hemocytes of 5-day-old adults. TmIKKß mRNA was upregulated post-E. coli challenge to the host. Moreover, RNAi-based TmIKKß mRNA silencing increased host larvae' susceptibility against E. coli, S. aureus and C. albicans. TmIKKß RNAi in the fat body led to a downregulation in mRNA expression of ten out of fourteen AMP genes, including TmTenecin1, -2, and -4; TmDefensin, and -like; TmColeoptericinA, and -B; and TmAttacin1a, -1b, and -2, suggesting the requirement of the gene in antimicrobial innate immune responses. Further, a decrease in the mRNA expression of NF-κB factors such as TmRelish, TmDorsal1, and TmDorsal2 in the fat body of T. molitor larvae was observed post-microorganisms challenge. Thus, TmIKKß regulates antimicrobial innate immune responses in T. molitor.


Subject(s)
Anti-Infective Agents , Tenebrio , Animals , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , NF-kappa B/metabolism , Escherichia coli , Amino Acid Sequence , Staphylococcus aureus , Immunity, Innate , Anti-Infective Agents/metabolism , Protein Serine-Threonine Kinases/metabolism , RNA, Messenger/metabolism
8.
Int J Mol Sci ; 24(7)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37047723

ABSTRACT

Although Toll-like receptors have been widely identified and functionally characterized in mammalian models and Drosophila, the immunological function of these receptors in other insects remains unclear. Here, we explored the relevant innate immune response of Tenebrio molitor (T. molitor) Toll-3 against Gram-negative bacteria, Gram-positive bacteria, and fungal infections. Our findings indicated that TmToll-3 expression was mainly induced by Candida albicans infections in the fat bodies, gut, Malpighian tubules, and hemolymph of young T. molitor larvae. Surprisingly, Escherichia coli systemic infection caused mortality after TmToll-3 knockdown via RNA interference (RNAi) injection, which was not observed in the control group. Further analyses indicated that in the absence of TmToll-3, the final effector of the Toll signaling pathway, antimicrobial peptide (AMP) genes and relevant transcription factors were significantly downregulated after E. coli challenge. Our results indicated that the expression of almost all AMP genes was suppressed in silenced individuals, whereas the expression of relevant genes was positively regulated after fungal injection. Therefore, this study revealed the immunological involvement of TmToll-3 in T. molitor in response to systematic infections.


Subject(s)
Escherichia coli Infections , Tenebrio , Animals , Escherichia coli/metabolism , Tenebrio/metabolism , Candida albicans/metabolism , Insect Proteins/metabolism , Immunity, Innate , Larva/genetics , Mammals/metabolism
10.
Int J Mol Sci ; 23(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36430968

ABSTRACT

The antimicrobial roles of Toll-like receptors have been mainly identified in mammalian models and Drosophila. However, its immunological function in other insects has yet to be fully clarified. Here, we determined the innate immune response involvement of TmToll-2 encountering Gram-negative, Gram-positive, and fungal infection. Our data revealed that TmToll-2 expression could be induced by Escherichia coli, Staphylococcus aureus, and Candida albicans infections in the fat bodies, gut, Malpighian tubules, and hemolymph of Tenebrio molitor young larvae. However, TmToll-2 silencing via RNAi technology revealed that sole E. coli systemic infection caused mortality in the double-strand RNA TmToll-2-injected group compared with that in the control group. Further investigation indicated that in the absence of TmToll-2, the final effector of Toll signaling pathway, antimicrobial peptide (AMP) genes and relevant transcription factors were significantly downregulated, mainly E. coli post-insult. We showed that the expression of all AMP genes was suppressed in the main immune organ of insects, namely, fat bodies, in silenced individuals, while the relevant expressions were not affected after fungal infection. Thus, our research revealed the immunological roles of TmToll-2 in different organs of T. molitor in response to pathogenic insults.


Subject(s)
Tenebrio , Animals , Tenebrio/metabolism , Escherichia coli/metabolism , Insect Proteins/metabolism , Staphylococcus aureus/metabolism , Adenosine Monophosphate/metabolism , Mammals/metabolism
11.
Front Immunol ; 13: 906192, 2022.
Article in English | MEDLINE | ID: mdl-35860244

ABSTRACT

Yellow mealworm (Tenebrio molitor) is a highly beneficial beetle that serves as an excellent source of edible protein as well as a practical study model. Therefore, studying its immune system is important. Like in other insects, the innate immune response effected through antimicrobial peptides production provides the most critical defense armory in T. molitor. Immune deficiency (Imd) signaling is one of the major pathways involved in the humoral innate immune response in this beetle. However, the nature of the molecules involved in the signaling cascade of the Imd pathway, from recognition to the production of final effectors, and their mechanism of action are yet to be elucidated in T. molitor model. In this review, we present a general overview of the current literature available on the Imd signaling pathway and its identified interaction partners in T. molitor.


Subject(s)
Tenebrio , Animals , Immunity, Innate
13.
Aquac Int ; 30(2): 1011-1035, 2022.
Article in English | MEDLINE | ID: mdl-35153391

ABSTRACT

Lectin protein families are diverse and multi-functional in crustaceans. The carbohydrate-binding domains (CRDs) of lectins recognize the molecular patterns associated with pathogens and orchestrate important roles in crustacean defense. In this study, two lectin homologs, a single CRD containing C-type lectin (CTL) and an L-type lectin (LTL) domain containing endoplasmic reticulum Golgi intermediate compartment 53 kDa protein (ERGIC-53) were identified from the freshwater prawn, Macrobrachium rosenbergii. The open reading frames of MrCTL and MrERGIC-53 were 654 and 1,515 bp, encoding polypeptides of 217 and 504 amino acids, respectively. Further, MrCTL showed a 20-amino acid transmembrane helix region and 10 carbohydrate-binding residues within the CRD. MrERGIC-53 showed a signal peptide region, a type-I transmembrane region, and a coiled-coil region at the C-terminus. Phylogenetic analysis revealed a close relationship between MrCTL and MrLectin and M. nipponense CTL (MnCTL), whereas MrERGIC-53 shared high sequence identity with Eriocheir sinensis ERGIC-53 and Penaeus vannamei MBL-1. A homology-based model predicted small carbohydrate-combining sites with a metal-binding site for ligand binding (Ca2+ binding site) in MrCTL and beta-sheets connected by short loops and beta-bends forming a dome-shaped beta-barrel structure representing the LTL domain of MrERGIC-53. Quantitative real-time polymerase chain reaction detected MrCTL and MrERGIC-53 transcripts in all examined tissues, with particularly high levels observed in hemocytes, hepatopancreas, and mucosal-associated tissues, such as the stomach and intestine. Further, the expression levels of MrCTL and MrERGIC-53 transcripts were remarkably altered after V. harveyi challenge, suggesting putative function in host innate immunity. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10499-022-00845-3.

14.
Dev Comp Immunol ; 127: 104284, 2022 02.
Article in English | MEDLINE | ID: mdl-34619174

ABSTRACT

Vertebrates rely on the most sophisticated adaptive immunity to defend themselves against various pathogens. This includes immunologic memory cells, which mount a stronger and more effective immune response against an antigen after its first encounter. Unlike vertebrates, invertebrates' defense completely depends on the innate immunity mechanisms including humoral and cell-mediated immunity. Furthermore, the invertebrate equivalent of the memory cells was discovered only recently. Since the discovery of transgenerational immune priming (TGIP) in crustaceans, numerous findings have proven the IP in invertebrate classes such as insects. TGIP can be induced through maternal priming pathways such as transcriptional regulation of antimicrobial peptides, and also paternal IP including the induction of proPO system activity. We appraise the diversity and specificity of IP agents to provide sustained immunologic memory in insects, particularly T. molitor in the review. An understanding of IP (more so TGIP) response in T. molitor will deepen our knowledge of invertebrate immunity, and boost the mass-rearing industry by reducing pathogen infection rates.


Subject(s)
Tenebrio , Animals , Immunity, Innate , Immunologic Memory , Insecta
15.
Front Physiol ; 12: 758859, 2021.
Article in English | MEDLINE | ID: mdl-34867464

ABSTRACT

Innate immunity is the ultimate line of defense against invading pathogens in insects. Unlike in the mammalian model, in the insect model, invading pathogens are recognized by extracellular receptors, which activate the Toll signaling pathway through an extracellular serine protease cascade. In the Toll-NF-κB pathway, the extracellular spätzle protein acts as a downstream ligand for Toll receptors in insects. In this study, we identified a novel Spätzle isoform (TmSpz1b) from RNA sequencing database of Tenebrio molitor. TmSpz1b was bioinformatically analyzed, and functionally characterized for the antimicrobial function by RNA interference (RNAi). The 702 bp open reading frame of TmSpz1b encoded a putative protein of 233 amino acid residues. A conserved cystine-knot domain with seven cysteine residues in TmSpz1b was involved in three disulfide bridges and the formation of a spätzle dimer. TmSpz1b was mostly expressed in the hemocytes of T. molitor late instar larvae. The mRNA expression of TmSpz1b was highly induced in the hemocytes after Escherichia coli, Staphylococcus aureus, and Candida albicans stimulation of T. molitor larvae. TmSpz1b silenced larvae were significantly more susceptible to E. coli infection. In addition, RNAi-based functional assay characterized TmSpz1b to be involved in the positive regulation of antimicrobial peptide genes in hemocytes and fat bodies. Further, the TmDorX2 transcripts were downregulated in TmSpz1b silenced individuals upon E. coli challenge suggesting the relationship to Toll signaling pathway. These results indicate that TmSpz1b is involved in the T. molitor innate immunity, causes the sequestration of Gram-negative bacteria by the regulatory action of antimicrobial peptides, and enhances the survival of T. molitor larvae.

16.
Int J Mol Sci ; 22(19)2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34639230

ABSTRACT

The cystine knot protein Spätzle is a Toll receptor ligand that modulates the intracellular signaling cascade involved in the nuclear factor kappa B (NF-κB)-mediated regulation of antimicrobial peptide (AMP)-encoding genes. Spätzle-mediated activation of the Toll pathway is critical for the innate immune responses of insects against Gram-positive bacteria and fungi. In this study, the open reading frame (ORF) sequence of Spätzle-like from T. molitor (TmSpz-like) identified from the RNA sequencing dataset was cloned and sequenced. The 885-bp TmSpz-like ORF encoded a polypeptide of 294 amino acid residues. TmSpz-like comprised a cystine knot domain with six conserved cysteine residues that formed three disulfide bonds. Additionally, TmSpz-like exhibited the highest amino acid sequence similarity with T. castaneum Spätzle (TcSpz). In the phylogenetic tree, TmSpz-like and TcSpz were located within a single cluster. The expression of TmSpz-like was upregulated in the Malpighian tubules and gut tissues of T. molitor. Additionally, the expression of TmSpz-like in the whole body and gut of the larvae was upregulated at 24 h post-E. coli infection. The results of RNA interference experiments revealed that TmSpz-like is critical for the viability of E. coli-infected T. molitor larvae. Eleven AMP-encoding genes were downregulated in the E. coli-infected TmSpz-like knockdown larvae, which suggested that TmSpz-like positively regulated these genes. Additionally, the NF-κB-encoding genes (TmDorX1, TmDorX2, and TmRelish) were downregulated in the E. coli-infected TmSpz-like knockdown larvae. Thus, TmSpz-like plays a critical role in the regulation of AMP production in T. molitor in response to E. coli infection.


Subject(s)
Antimicrobial Cationic Peptides/metabolism , Escherichia coli Infections/microbiology , Escherichia coli/immunology , Immunity, Innate/immunology , Insect Proteins/metabolism , Staphylococcus aureus/immunology , Tenebrio/immunology , Amino Acid Sequence , Animals , Base Sequence , Escherichia coli Infections/immunology , Escherichia coli Infections/metabolism , Gene Expression Regulation, Developmental , Insect Proteins/genetics , Larva/genetics , Larva/immunology , Larva/metabolism , Larva/microbiology , Phylogeny , Sequence Homology, Amino Acid , Staphylococcal Infections , Tenebrio/genetics , Tenebrio/metabolism , Tenebrio/microbiology
17.
Microorganisms ; 9(8)2021 Jul 25.
Article in English | MEDLINE | ID: mdl-34442659

ABSTRACT

Populus canadensis Moench forests established in Saemangeum-reclaimed land have been invaded by Hyphantria cunea Drury, causing defoliation and stunted growth. This study investigated the biocontrol potential of cuticle degrading chitinase and protease secreted by Lysobacter antibioticus HS124 against H. cunea larvae. In addition, L. antibioticus HS124 was examined for indole-3-acetic acid phytohormone production for plant growth promotion. To determine the larvicidal activity in the laboratory experiments, crude enzymes, bacteria culture, CY medium, and water (control) were sprayed on the larvae reared on natural diet in insect rearing dishes. Treatment with crude enzymes and bacteria culture caused 76.7% and 66.7% larvae mortality, respectively. The larvae cuticle, mainly composed of chitin and proteins, was degraded by cuticle-degrading enzymes, chitinase, and protease in both the bacteria culture and crude enzyme treatments, causing swelling and disintegration of the cuticle. Field application of the bacteria culture was achieved by vehicle-mounted sprayer. Bacterial treatment caused morphological damage on the larvae cuticles and subsequent mortality. Foliar application of the bacteria culture reduced tree defoliation by H. cunea and enhanced growth compared to the control. Especially, L. antibioticus HS124 produced auxins, and increased growth of poplar trees.

18.
Front Immunol ; 12: 667664, 2021.
Article in English | MEDLINE | ID: mdl-34135896

ABSTRACT

The yellow mealworm beetle (Tenebrio molitor) has been exploited as an experimental model to unravel the intricacies of cellular and humoral immunity against pathogenic infections. Studies on this insect model have provided valuable insights into the phenotypic plasticity of immune defenses against parasites and pathogens. It has thus been possible to characterize the hemocoelic defenses of T. molitor that rely on the recognition of non-self-components of pathogens by pattern recognition receptors (PRRs). The subsequent signaling cascade activating pathways such as the NF-κB controlled by Toll and IMD pathways lead to the synthesis of antimicrobial peptides (AMPs), onset of hemocyte-driven phagocytosis, and activation of the prophenoloxidase cascade regulating the process of melanization. Nevertheless, the activation of autophagy-mediated defenses of T. molitor against the facultative intracellular gram-positive bacterium Listeria monocytogenes provides clear evidence of the existence of a cross-talk between autophagy and the IMD pathway. Moreover, the identification of several autophagy-related genes (Atgs) in T. molitor transcriptome and expressed sequence tag (EST) databases has contributed to the understanding of the autophagy-signaling cascade triggered by L. monocytogenes challenge. Providing further evidence of the cross-talk hypothesis, TmRelish has been shown to be required not only for regulating the synthesis of AMPs through the PGRP-LE/IMD pathway activation but also for the expression of Atgs in T. molitor larvae following L. monocytogenes challenge. Notably, L. monocytogenes can stimulate the T. molitor innate immune system by producing molecules recognized by the multifunctional PRR (TmPGRP-LE), which stimulates intracellular activation of the IMD pathway and autophagy. Considering the conservation of autophagy components involved in combating intracellular pathogens, it will be interesting to extrapolate a dynamic cross-talk model of immune activation. This review summarizes the most significant findings on the regulation of autophagy in T. molitor during L. monocytogenes infection and on the role of the innate immunity machinery, including the NF-κB pathway, in the control of pathogenic load.


Subject(s)
Autophagy-Related Proteins/metabolism , Immunity, Innate , Insect Proteins/metabolism , Listeria monocytogenes/pathogenicity , Listeriosis/microbiology , Macroautophagy , Tenebrio/microbiology , Animals , Autophagy-Related Proteins/genetics , Bacterial Load , Host-Pathogen Interactions , Insect Proteins/genetics , Listeria monocytogenes/immunology , Listeriosis/genetics , Listeriosis/immunology , Listeriosis/metabolism , Signal Transduction , Tenebrio/genetics , Tenebrio/immunology , Tenebrio/metabolism
19.
Mar Genomics ; 59: 100862, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33827771

ABSTRACT

Charonia lampas sauliae (triton snails, triton shells or tritons; Mollusca, Caenogastropoda, Littorinimorpha, Ranellidae) is a marine species with a wide distribution. In Korea, this species is listed as vulnerable and is regionally protected as an endangered species. Here, we report the first comprehensive transcriptome dataset of C. lampas sauliae obtained using the Illumina HiSeq 2500 platform. In total, 97.68% of raw read sequences were processed as clean reads. Of the 577,478 contigs obtained, 146,026 sequences were predicted to contain coding regions. About 89.34% of all annotated unigene sequences showed homologous matches to protein sequences in PANM DB (Protostome database). Further, about one-third of the unigene sequences were annotated using the UniGene, Swiss-Prot, Clusters of Orthologous Groups (COG) and Gene Ontology (GO) databases. In total, 190 enzymes were predicted under key metabolic pathways under stood through Kyoto Encyclopedia of Genes and Genomes (KEGG) database annotation. Repetitive elements such as long terminal repeats (LTRs), short interspersed nuclear elements (SINEs), long interspersed nuclear elements (LINEs), and DNA elements were enriched in the unigene sequences. Among the identified transcripts were the channel proteins, some of which were blocked by tetrodotoxin, which is thought to be synthesized by symbiotic bacteria inhabiting the shells. In addition, conotoxin superfamily peptides, such as B-conotoxin, conotoxin superfamily T and alpha-conotoxin, were identified, which may have relevance to biomedical and evolutionary research. A transcriptome-wide search for polymorphic loci identified 21,568 simple sequence repeats (SSRs) in the unigene sequences. Most SSRs were dinucleotides, among which AC/GT was the dominant SSR type. The molecular and genetic resources revealed in this study could be utilized for investigations on the fitness of the species in the marine environment and sustainability in a changing habitat.


Subject(s)
Neurotoxins , Transcriptome , Animals , Gene Expression Profiling , Genetic Markers , Microsatellite Repeats , Snails/genetics
20.
Front Physiol ; 12: 758862, 2021.
Article in English | MEDLINE | ID: mdl-35069235

ABSTRACT

The inhibitor of nuclear factor-kappa B (NF-κB) kinase (IKK) is the core regulator of the NF-κB pathway against pathogenic invasion in vertebrates or invertebrates. IKKß, -ε and -γ have pivotal roles in the Toll and immune deficiency (IMD) pathways. In this study, a homolog of IKKε (TmIKKε) was identified from Tenebrio molitor RNA sequence database and functionally characterized for its role in regulating immune signaling pathways in insects. The TmIKKε gene is characterized by two exons and one intron comprising an open reading frame (ORF) of 2,196 bp that putatively encodes a polypeptide of 731 amino acid residues. TmIKKε contains a serine/threonine protein kinases catalytic domain. Phylogenetic analysis established the close homology of TmIKKε to Tribolium castaneum IKKε (TcIKKε) and its proximity with other IKK-related kinases. The expression of TmIKKε mRNA was elevated in the gut, integument, and hemocytes of the last-instar larva and the fat body, Malpighian tubules, and testis of 5-day-old adults. TmIKKε expression was significantly induced by Escherichia coli, Staphylococcus aureus, and Candida albicans challenge in whole larvae and tissues, such as hemocytes, gut, and fat body. The knockdown of the TmIKKε messenger RNA (mRNA) expression significantly reduced the survival of the larvae against microbial challenges. Further, we investigated the induction patterns of 14 T. molitor antimicrobial peptides (AMPs) genes in TmIKKε gene-silencing model after microbial challenges. While in hemocytes, the transcriptional regulation of most AMPs was negatively regulated in the gut and fat body tissue of T. molitor, AMPs, such as TmTenecin 1, TmTenecin 4, TmDefensin, TmColeoptericin A, TmColeoptericin B, TmAttacin 1a, and TmAttacin 2, were positively regulated in TmIKKε-silenced individuals after microbial challenge. Collectively, the results implicate TmIKKε as an important factor in antimicrobial innate immune responses in T. molitor.

SELECTION OF CITATIONS
SEARCH DETAIL