Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep Med ; : 101572, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38754420

ABSTRACT

Acute myeloid leukemia (AML) is characterized by the accumulation of immature myeloid cells in the bone marrow and the peripheral blood. Nearly half of the AML patients relapse after standard induction therapy, and new forms of therapy are urgently needed. Chimeric antigen receptor (CAR) T therapy has so far not been successful in AML due to lack of efficacy and safety. Indeed, the most attractive antigen targets are stem cell markers such as CD33 or CD123. We demonstrate that CD37, a mature B cell marker, is expressed in AML samples, and its presence correlates with the European LeukemiaNet (ELN) 2017 risk stratification. We repurpose the anti-lymphoma CD37CAR for the treatment of AML and show that CD37CAR T cells specifically kill AML cells, secrete proinflammatory cytokines, and control cancer progression in vivo. Importantly, CD37CAR T cells display no toxicity toward hematopoietic stem cells. Thus, CD37 is a promising and safe CAR T cell AML target.

2.
J Immunother Cancer ; 12(4)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38604812

ABSTRACT

BACKGROUND: Ovarian cancer (OC) is the leading cause of death from gynecologic malignancies in the Western world. Contributing factors include a high frequency of late-stage diagnosis, the development of chemoresistance, and the evasion of host immune responses. Currently, debulking surgery and platinum-based chemotherapy are the treatment cornerstones, although recurrence is common. As the clinical efficacy of immune checkpoint blockade is low, new immunotherapeutic strategies are needed. Chimeric antigen receptor (CAR) T cell therapy empowers patients' own T cells to fight and eradicate cancer, and has been tested against various targets in OC. A promising candidate is the MUC16 ectodomain. This ectodomain remains on the cell surface after cleavage of cancer antigen 125 (CA125), the domain distal from the membrane, which is currently used as a serum biomarker for OC. CA125 itself has not been tested as a possible CAR target. In this study, we examined the suitability of the CA125 as a target for CAR T cell therapy. METHODS: We tested a series of antibodies raised against the CA125 extracellular repeat domain of MUC16 and adapted them to the CAR format. Comparisons between these candidates, and against an existing CAR targeting the MUC16 ectodomain, identified K101 as having high potency and specificity. The K101CAR was subjected to further biochemical and functional tests, including examination of the effect of soluble CA125 on its activity. Finally, we used cell lines and advanced orthotopic patient-derived xenograft (PDX) models to validate, in vivo, the efficiency of our K101CAR construct. RESULTS: We observed a high efficacy of K101CAR T cells against cell lines and patient-derived tumors, in vitro and in vivo. We also demonstrated that K101CAR functionality was not impaired by the soluble antigen. Finally, in direct comparisons, K101CAR, which targets the CA125 extracellular repeat domains, was shown to have similar efficacy to the previously validated 4H11CAR, which targets the MUC16 ectodomain. CONCLUSIONS: Our in vitro and in vivo results, including PDX studies, demonstrate that the CA125 domain of MUC16 represents an excellent target for treating MUC16-positive malignancies.


Subject(s)
CA-125 Antigen , Membrane Proteins , Female , Humans , CA-125 Antigen/metabolism , Ovarian Neoplasms/drug therapy
3.
Front Bioeng Biotechnol ; 11: 1207576, 2023.
Article in English | MEDLINE | ID: mdl-37409169

ABSTRACT

Adoptive transfer of T cells modified to express chimeric antigenic receptors (CAR) has emerged as a solution to cure refractory malignancies. However, although CAR T cell treatment of haematological cancers has now shown impressive improvement in outcome, solid tumours have been more challenging to control. The latter type is protected by a strong tumour microenvironment (TME) which might impact cellular therapeutic treatments. Indeed, the milieu around the tumour can become particularly inhibitory to T cells by directly affecting their metabolism. Consequently, the therapeutic cells become physically impeded before being able to attack the tumour. It is therefore extremely important to understand the mechanism behind this metabolic break in order to develop TME-resistant CAR T cells. Historically, the measurement of cellular metabolism has been performed at a low throughput which only permitted a limited number of measurements. However, this has been changed by the introduction of real-time technologies which have lately become more popular to study CAR T cell quality. Unfortunately, the published protocols lack uniformity and their interpretation become confusing. We herein tested the essential parameters to perform a metabolic study on CAR T cells and propose a check list of factors that should be set in order to draw sound conclusion.

4.
Nat Commun ; 14(1): 3375, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37291203

ABSTRACT

Osteosarcoma (OS) remains a dismal malignancy in children and young adults, with poor outcome for metastatic and recurrent disease. Immunotherapies in OS are not as promising as in some other cancer types due to intra-tumor heterogeneity and considerable off-target expression of the potentially targetable proteins. Here we show that chimeric antigen receptor (CAR) T cells could successfully target an isoform of alkaline phosphatase, ALPL-1, which is highly and specifically expressed in primary and metastatic OS. The target recognition element of the second-generation CAR construct is based on two antibodies, previously shown to react against OS. T cells transduced with these CAR constructs mediate efficient and effective cytotoxicity against ALPL-positive cells in in vitro settings and in state-of-the-art in vivo orthotopic models of primary and metastatic OS, without unexpected toxicities against hematopoietic stem cells or healthy tissues. In summary, CAR-T cells targeting ALPL-1 show efficiency and specificity in treating OS in preclinical models, paving the path for clinical translation.


Subject(s)
Bone Neoplasms , Osteosarcoma , Child , Humans , Immunotherapy, Adoptive , T-Lymphocytes , Immunotherapy , Osteosarcoma/therapy , Bone Neoplasms/therapy , Cell Line, Tumor , Alkaline Phosphatase
5.
Cells ; 11(9)2022 04 25.
Article in English | MEDLINE | ID: mdl-35563759

ABSTRACT

The manufacture of efficacious CAR T cells represents a major challenge in cellular therapy. An important aspect of their quality concerns energy production and consumption, known as metabolism. T cells tend to adopt diverse metabolic profiles depending on their differentiation state and their stimulation level. It is therefore expected that the introduction of a synthetic molecule such as CAR, activating endogenous signaling pathways, will affect metabolism. In addition, upon patient treatment, the tumor microenvironment might influence the CAR T cell metabolism by compromising the energy resources. The access to novel technology with higher throughput and reduced cost has led to an increased interest in studying metabolism. Indeed, methods to quantify glycolysis and mitochondrial respiration have been available for decades but were rarely applied in the context of CAR T cell therapy before the release of the Seahorse XF apparatus. The present review will focus on the use of this instrument in the context of studies describing the impact of CAR on T cell metabolism and the strategies to render of CAR T cells more metabolically fit.


Subject(s)
Receptors, Chimeric Antigen , Glycolysis , Humans , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/metabolism , Tumor Microenvironment
6.
Cancer Immunol Res ; 9(12): 1425-1438, 2021 12.
Article in English | MEDLINE | ID: mdl-34686489

ABSTRACT

Adoptive transfer of T cells expressing chimeric antigen receptors (CAR) has shown remarkable clinical efficacy against advanced B-cell malignancies but not yet against solid tumors. Here, we used fluorescent imaging microscopy and ex vivo assays to compare the early functional responses (migration, Ca2+, and cytotoxicity) of CD20 and EGFR CAR T cells upon contact with malignant B cells and carcinoma cells. Our results indicated that CD20 CAR T cells rapidly form productive ICAM-1-dependent conjugates with their targets. By comparison, EGFR CAR T cells only initially interacted with a subset of carcinoma cells located at the periphery of tumor islets. After this initial peripheral activation, EGFR CAR T cells progressively relocated to the center of tumor cell regions. The analysis of this two-step entry process showed that activated CAR T cells triggered the upregulation of ICAM-1 on tumor cells in an IFNγ-dependent pathway. The ICAM-1/LFA-1 interaction interference, through antibody or shRNA blockade, prevented CAR T-cell enrichment in tumor islets. The requirement for IFNγ and ICAM-1 to enable CAR T-cell entry into tumor islets is of significance for improving CAR T-cell therapy in solid tumors.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Intercellular Adhesion Molecule-1/metabolism , Interferon-gamma/metabolism , Lung Neoplasms/genetics , Receptors, Chimeric Antigen/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Humans , Lung Neoplasms/pathology , Mice , Xenograft Model Antitumor Assays
7.
Nat Biomed Eng ; 5(11): 1246-1260, 2021 11.
Article in English | MEDLINE | ID: mdl-34083764

ABSTRACT

The efficacy of adoptive cell therapy for solid tumours is hampered by the poor accumulation of the transferred T cells in tumour tissue. Here, we show that forced expression of C-X-C chemokine receptor type 6 (whose ligand is highly expressed by human and murine pancreatic cancer cells and tumour-infiltrating immune cells) in antigen-specific T cells enhanced the recognition and lysis of pancreatic cancer cells and the efficacy of adoptive cell therapy for pancreatic cancer. In mice with subcutaneous pancreatic tumours treated with T cells with either a transgenic T-cell receptor or a murine chimeric antigen receptor targeting the tumour-associated antigen epithelial cell adhesion molecule, and in mice with orthotopic pancreatic tumours or patient-derived xenografts treated with T cells expressing a chimeric antigen receptor targeting mesothelin, the T cells exhibited enhanced intratumoral accumulation, exerted sustained anti-tumoral activity and prolonged animal survival only when co-expressing C-X-C chemokine receptor type 6. Arming tumour-specific T cells with tumour-specific chemokine receptors may represent a promising strategy for the realization of adoptive cell therapy for solid tumours.


Subject(s)
Immunotherapy, Adoptive , Pancreatic Neoplasms , Receptors, CXCR6/metabolism , T-Lymphocytes , Animals , Cell- and Tissue-Based Therapy , Mesothelin , Mice , Pancreatic Neoplasms/therapy , Receptors, Chemokine/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...