Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
FASEB Bioadv ; 6(1): 26-39, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38223202

ABSTRACT

Protein glycosylation responds sensitively to disease states. It is implicated in every hallmark of cancer and has recently started to be considered as a hallmark itself. Changes in N-glycosylation microheterogeneity are more dramatic than those of protein expression due to the non-template nature of protein glycosylation. This enables their potential use in serum-based diagnostics. Here, we perform glycopeptidomics on serum from patients with oropharyngeal squamous cell carcinoma (OPSCC), compared to controls and comparing between cancers based on etiology (human papilloma virus- positive or negative). Using MS2, we then targeted glycoforms, significantly different between the groups, to identify their glycopeptide compositions. Simultaneously we investigate the same serum proteins, comparing whether N-glycosylation changes reflect protein-level changes. Significant glycoforms were identified from proteins such as alpha-1-antitrypsin (SERPINA1), haptoglobin, and different immunoglobulins. SERPINA1 had glycovariance at 2 N-glycosylation sites, that were up to 35 times more abundant in even early-stage OPSCCs, despite minimal differences between SERPINA1 protein levels between groups. Some identified glycoforms' fold changes (FCs) were in line with serum protein level FCs, others were less abundant in early-stage cancers but with great variance in higher-stage cancers, such as on immunoglobulin heavy constant gamma 2, despite no change in protein levels. Such findings indicate that glycovariant analysis might be more beneficial than proteomic analysis, which is yet to be fruitful in the search for biomarkers. Highly sensitive glycopeptide changes could potentially be used in the future for cancer screening. Additionally, characterizing the glycopeptide changes in OPSCC is valuable in the search for potential therapeutic targets.

2.
Front Cell Dev Biol ; 10: 967482, 2022.
Article in English | MEDLINE | ID: mdl-36158187

ABSTRACT

Cells shape their extracellular milieu by secreting intracellular products into the environment including extracellular vesicles which are lipid-bilayer limited membrane particles. These vesicles carry out a range of functions, including regulation of coagulation, via multiple contributor mechanisms. Urinary extracellular vesicles are secreted by various cells, lining the urinary space, including the nephron and bladder. They are known to have procoagulant properties, however, the details of this function, beyond tissue factor are not well known. The aim of the study was to access the role of urinary extracellular vesicles in impacting coagulation upon supplementation to plasma. This could indicate their physiological function upon kidney injury or pathology. Supplementation to standard human plasma and plasmas deficient in various coagulation factors was used for this purpose, and calibrated automated thrombogram (CAT®) was the major technique applied. We found that these vesicles contain multiple coagulation-related factors, and their lipid composition affects coagulation activities of plasma upon supplementation. Remarkably, these vesicles can restore thrombin generation in FVII, FVIII, FIX and FXI -deficient plasmas. This study explores the multiple roles of urinary extracellular vesicles in coagulation in in vitro blood coagulation and implies their importance in its regulation by several mechanisms.

3.
PLoS One ; 17(8): e0272810, 2022.
Article in English | MEDLINE | ID: mdl-36006970

ABSTRACT

BACKGROUND: Primary sclerosing cholangitis (PSC) is a chronic liver disease characterized by biliary strictures, cholestasis, and a markedly increased risk of cholangiocarcinoma. New markers for the screening and differential diagnosis of PSC are needed. In this pilot study, we have analyzed both the bile and serum proteomic profiles of 80 PSC patients and non-PSC controls (n = 6 for bile and n = 18 for serum). AIM: The aim of this study was to discover candidates for new biomarkers for the differential diagnosis of PSC. METHODS: Bile and serum samples were processed and subsequently analyzed using ultra performance liquid chromatography-ultra definition mass spectrometry (UPLC-UDMSE). Further analysis included statistical analyses such as receiver operating characteristic curve analysis as well as pathway analysis using Ingenuity Pathway Analysis. RESULTS AND CONCLUSIONS: In bile, we discovered 64 proteins with significantly different levels between the groups, with fold changes of up to 129. In serum, we discovered 112 proteins with significantly different levels. Receiver operating characteristic curve analysis found multiple proteins with high area under the curve values, up to 0.942, indicating that these serum proteins are of value as new non-invasive classifiers of PSC. Pathway analysis revealed multiple canonical pathways that were enriched in the dataset, which have roles in bile homeostasis and metabolism. We present several serum proteins that could serve as new blood-based markers for the diagnosis of PSC after further validation. The measurement of serum levels of these proteins could be of use in the screening of patients with suspected PSC.


Subject(s)
Bile Duct Neoplasms , Cholangitis, Sclerosing , Bile/metabolism , Bile Duct Neoplasms/metabolism , Bile Ducts, Intrahepatic/pathology , Biomarkers , Cholangitis, Sclerosing/pathology , Diagnosis, Differential , Humans , Pilot Projects , Proteomics
4.
PLoS One ; 17(5): e0267967, 2022.
Article in English | MEDLINE | ID: mdl-35559953

ABSTRACT

The prevalence of allergic diseases and asthma is increasing rapidly worldwide, with environmental and lifestyle behaviors implicated as a reason. Epidemiological studies have shown that children who grow up on farms are at lower risk of developing childhood atopic disease, indicating the presence of a protective "farm effect". The Old Order Mennonite (OOM) community in Upstate New York have traditional, agrarian lifestyles, a low rate of atopic disease, and long periods of exclusive breastfeeding. Human milk proteins are heavily glycosylated, although there is a paucity of studies investigating the milk glycoproteome. In this study, we have used quantitative glycoproteomics to compare the N-glycoprotein profiles of 54 milk samples from Rochester urban/suburban and OOM mothers, two populations with different lifestyles, exposures, and risk of atopic disease. We also compared N-glycoprotein profiles according to the presence or absence of atopic disease in the mothers and, separately, the children. We identified 79 N-glycopeptides from 15 different proteins and found that proteins including immunoglobulin A1, polymeric immunoglobulin receptor, and lactotransferrin displayed significant glycan heterogeneity. We found that the abundances of 38 glycopeptides differed significantly between Rochester and OOM mothers and also identified four glycopeptides with significantly different abundances between all comparisons. These four glycopeptides may be associated with the development of atopic disease. The findings of this study suggest that the differential glycosylation of milk proteins could be linked to atopic disease.


Subject(s)
Breast Feeding , Hypersensitivity, Immediate , Milk, Human , Child , Ethnicity , Female , Glycopeptides , Glycoproteins , Humans , Hypersensitivity, Immediate/epidemiology , Life Style , Milk Proteins , Milk, Human/chemistry , New York , Proteomics
5.
J Heart Lung Transplant ; 41(3): 311-324, 2022 03.
Article in English | MEDLINE | ID: mdl-34933799

ABSTRACT

BACKGROUND: The pathophysiological changes related to brain death may affect the quality of the transplanted organs and expose the recipients to risks. We probed systemic changes reflected in donor plasma proteome and investigated their relationship to heart transplant outcomes. METHODS: Plasma samples from brain-dead multi-organ donors were analyzed by label-free protein quantification using high-definition mass spectrometry. Unsupervised and supervised statistical models were used to determine proteome differences between brain-dead donors and healthy controls. Proteome variation and the corresponding biological pathways were analyzed and correlated with transplant outcomes. RESULTS: Statistical models revealed that donors had a unique but heterogeneous plasma proteome with 237 of 463 proteins being changed compared to controls. Pathway analysis showed that coagulation, gluconeogenesis, and glycolysis pathways were upregulated in donors, while complement, LXR/RXR activation, and production of nitric oxide and reactive oxygen species in macrophages pathways were downregulated. In point-biserial correlation analysis, lysine-specific demethylase 3A was moderately correlated with any grade and severe PGD. In univariate and multivariate Cox regression analyses myosin Va and proteasome activator complex subunit 2 were significantly associated with the development of acute rejections with hemodynamic compromise within 30 days. Finally, we found that elevated levels of lysine-specific demethylase 3A and moesin were identified as predictors for graft-related 1-year mortality in univariate analysis. CONCLUSIONS: We show that brain death significantly changed plasma proteome signature Donor plasma protein changes related to endothelial cell and cardiomyocyte function, inflammation, and vascular growth and arteriogenesis could predict transplant outcome suggesting a role in donor evaluation.


Subject(s)
Brain Death/blood , Heart Transplantation , Proteome/analysis , Adult , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Prospective Studies , Treatment Outcome
6.
PLoS One ; 15(8): e0236439, 2020.
Article in English | MEDLINE | ID: mdl-32813744

ABSTRACT

Extracellular vesicles (EVs) in human blood are a potential source of biomarkers. To which extent anticoagulation affects their concentration, cellular origin and protein composition is largely unexplored. To study this, blood from 23 healthy subjects was collected in acid citrate dextrose (ACD), citrate or EDTA, or without anticoagulation to obtain serum. EVs were isolated by ultracentrifugation or by size-exclusion chromatography (SEC) for fluorescence-SEC. EVs were analyzed by micro flow cytometry, NTA, TEM, Western blot, and protein mass spectrometry. The plasma EV concentration was unaffected by anticoagulants, but serum contained more platelet EVs. The protein composition of plasma EVs differed between anticoagulants, and between plasma and serum. Comparison to other studies further revealed that the shared EV protein composition resembles the "protein corona" of synthetic nanoparticles incubated in plasma or serum. In conclusion, we have validated a higher concentration of platelet EVs in serum than plasma by contemporary EV methods. Anticoagulation should be carefully described (i) to enable study comparison, (ii) to utilize available sample cohorts, and (iii) when preparing/selecting biobank samples. Further, the similarity of the EV protein corona and that of nanoparticles implicates that EVs carry both intravesicular and extravesicular cargo, which will expand their applicability for biomarker discovery.


Subject(s)
Biomarkers/blood , Blood Proteins/isolation & purification , Extracellular Vesicles/genetics , Proteome/genetics , Adult , Blood Platelets/chemistry , Blood Proteins/genetics , Female , Flow Cytometry/methods , Healthy Volunteers , Humans , Male , Mass Spectrometry/methods , Middle Aged
7.
Foods ; 9(8)2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32718013

ABSTRACT

Until now, cheese peptidomics approaches have been criticised for their lower throughput. Namely, analytical gradients that are most commonly used for mass spectrometric detection are usually over 60 or even 120 min. We developed a cheese peptide mapping method using nano ultra-high-performance chromatography data-independent acquisition high-resolution mass spectrometry (nanoUHPLC-DIA-HRMS) with a chromatographic gradient of 40 min. The 40 min gradient did not show any sign of compromise in milk protein coverage compared to 60 and 120 min methods, providing the next step towards achieving higher-throughput analysis. Top 150 most abundant peptides passing selection criteria across all samples were cross-referenced with work from other publications and a good correlation between the results was found. To achieve even faster sample turnaround enhanced DIA methods should be considered for future peptidomics applications.

8.
PLoS One ; 15(6): e0233974, 2020.
Article in English | MEDLINE | ID: mdl-32542012

ABSTRACT

BACKGROUND: The surrogate immunohistochemical marker, p16INK4a, is used in clinical practice to determine the high-risk human papillomavirus (HPV) status of oropharyngeal squamous cell carcinomas (OPSCC). With a specificity of 83%, this will misclassify some patients compared with direct HPV testing. Patients who are p16INK4a-positive but HPV DNA-negative, or RNA-negative, may be unsuitable for treatment de-escalation aimed at reducing treatment-related side effects. We aimed to identify cost-effective serum markers to improve decision making for patients at risk of misclassification by p16INK4a alone. METHODS: Serum proteins from pre-treatment samples of 36 patients with OPSCC were identified and quantified using label-free mass spectrometry-based proteomics. HPV-status was determined using p16INK4a/HPV DNA and E6/E7 mRNA. Serum protein expressions were compared between groups of patients according to HPV status, using the unpaired t-test with a Benjamini-Hochberg correction. ROC curves (AUC) were calculated with SPSS (v25). RESULTS: Of 174 serum proteins identified, complement component C7 (C7), apolipoprotein F (ApoF) and galectin-3-Binding Protein (LGALS3BP) significantly differed between HPV-positive and -negative tumors (AUC ranging from 0.84-0.87). ApoF levels were more than twice as high in the E6/E7 mRNA HPV-positive group than HPV-negative. CONCLUSIONS: Serum C7, ApoF and LGALS3BP levels discriminate between HPV-positive and HPV-negative OPSCC. Further studies are needed to validate these host immunity-related proteins as markers for HPV-associated OPSCC.


Subject(s)
Antigens, Neoplasm/blood , Apolipoproteins/blood , Biomarkers, Tumor/blood , Complement C7/analysis , Oropharyngeal Neoplasms/blood , Oropharyngeal Neoplasms/virology , Papillomaviridae/isolation & purification , Papillomavirus Infections/diagnosis , Squamous Cell Carcinoma of Head and Neck/virology , Aged , Aged, 80 and over , Biomarkers/blood , Cyclin-Dependent Kinase Inhibitor p16/blood , Female , Humans , Male , Middle Aged , Papillomavirus Infections/complications , Squamous Cell Carcinoma of Head and Neck/blood
9.
Transl Oncol ; 13(10): 100807, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32559714

ABSTRACT

Lipid metabolic reprogramming is one hallmark of cancer. Lipid metabolism is regulated by numerous enzymes, many of which are targeted by several drugs on the market. We aimed to characterize the lipid alterations in oral squamous cell carcinoma (OSCC) as a basis for understanding its lipid metabolism, thus identifying potential therapeutic targets. We compared lipid species, classes, and glycerophospholipid (GPL) fatty acid species between paired tumor tissue and healthy oral tongue mucosa samples from 10 OSCC patients using a QExactive mass spectrometer. After filtering the 1370 lipid species identified, we analyzed 349 species: 71 were significantly increased in OSCC. The GPL metabolism pathway was most represented by the lipids differing in OSCC (P = .005). Cholesterol and the GPLs phosphatidylcholines, phosphatidylethanolamines, and phosphatidylinositols were most significantly increased in OSCC tissue (FC 1.8, 2.0, 2.1, and 2.3 and, P = .003, P = .005, P = .002, P = .007). In conclusion, we have demonstrated a shift in the lipid metabolism in these OSCC samples by characterizing the detailed landscape. Predominantly, cholesterol and GPL metabolism were altered, suggesting that interactions with sterol regulatory binding proteins may be involved. The FA composition changes of the GPLs suggest increased de novo lipogenesis.

10.
Tumour Biol ; 42(6): 1010428320936410, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32586207

ABSTRACT

Pancreatic ductal adenocarcinoma is the most common and aggressive type of pancreatic cancer, with a 5-year survival rate that is less than 10%. New biomarkers to aid in predicting the prognosis of pancreatic ductal adenocarcinoma patients are needed. Previous proteomic studies have to a great extent focused on finding proteins of value for the diagnosis of pancreatic ductal adenocarcinoma. There is a lack of studies that have profiled the serum or plasma proteome in order to discover candidates for new prognostic biomarkers. In this study, we have used ultra-performance liquid chromatography-ultra-definition mass spectrometry to analyze the serum samples of 21 pancreatic ductal adenocarcinoma patients with short or long survival. Statistical analysis discovered 31 proteins whose expression differed significantly between pancreatic ductal adenocarcinoma patients with short or long survival. Pathway analysis discovered multiple canonical pathways enriched in this data set, with several pathways having roles in inflammation and lipid metabolism. The serum proteins identified here, which include complement components and several enzymes, could be of value as candidates for new noninvasive prognostic markers.


Subject(s)
Adenocarcinoma/mortality , Biomarkers, Tumor/metabolism , Blood Proteins/metabolism , Carcinoma, Pancreatic Ductal/mortality , Pancreatic Neoplasms/mortality , Proteome/metabolism , Proteomics/methods , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Aged , Biomarkers, Tumor/analysis , Blood Proteins/analysis , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Female , Follow-Up Studies , Humans , Male , Middle Aged , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pilot Projects , Prognosis , Protein Interaction Maps , Proteome/analysis , Survival Rate
11.
Cancer Med ; 9(14): 5221-5234, 2020 07.
Article in English | MEDLINE | ID: mdl-32452655

ABSTRACT

Colorectal cancer (CRC) includes tumors in the right colon, left colon, and rectum, although they differ significantly from each other in aspects such as prognosis and treatment. Few previous mass spectrometry-based studies have analyzed differences in protein expression depending on the tumor location. In this study, we have used mass spectrometry-based proteomics to analyze plasma samples from 83 CRC patients to study if differences in plasma protein expression can be seen depending on primary tumor location (right colon, left colon, or rectum). Differences were studied between the groups both regardless of and according to tumor stage (II or III). Large differences in plasma protein expression were seen, and we found that plasma samples from patients with rectal cancer separated from samples from patients with colon cancer when analyzed by principal component analysis and hierarchical clustering. Samples from patients with cancer in the right and left colon also tended to separate from each other. Pathway analysis discovered canonical pathways involved in lipid metabolism and inflammation to be enriched. This study will help to further define CRC as distinct entities depending on tumor location, as shown by the widespread differences in plasma protein profile and dysregulated pathways.


Subject(s)
Blood Proteins/metabolism , Colorectal Neoplasms/blood , Mass Spectrometry/methods , Female , Humans , Male
12.
Sci Rep ; 10(1): 7787, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32385381

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a lung parenchymal disease of unknown cause usually occurring in older adults. It is a chronic and progressive condition with poor prognosis and diagnosis is largely clinical. Currently, there exist few biomarkers that can predict patient outcome or response to therapies. Together with lack of markers, the need for novel markers for the detection and monitoring of IPF, is paramount. We have performed label-free plasma proteomics of thirty six individuals, 17 of which had confirmed IPF. Proteomics data was analyzed by volcano plot, hierarchical clustering, Partial-least square discriminant analysis (PLS-DA) and Ingenuity pathway analysis. Univariate and multivariate statistical analysis overlap identified haptoglobin-related protein as a possible marker of IPF when compared to control samples (Area under the curve 0.851, ROC-analysis). LXR/RXR activation and complement activation pathways were enriched in t-test significant proteins and oxidative regulators, complement proteins and protease inhibitors were enriched in PLS-DA significant proteins. Our pilot study points towards aberrations in complement activation and oxidative damage in IPF patients and provides haptoglobin-related protein as a new candidate biomarker of IPF.


Subject(s)
Blood Proteins , Complement System Proteins/immunology , Haptoglobins/metabolism , Idiopathic Pulmonary Fibrosis/immunology , Idiopathic Pulmonary Fibrosis/metabolism , Oxidative Stress , Proteomics , Signal Transduction , Aged , Biomarkers , Case-Control Studies , Complement System Proteins/metabolism , Computational Biology/methods , Female , Humans , Idiopathic Pulmonary Fibrosis/pathology , Male , Proteome , Proteomics/methods , ROC Curve
13.
Oncology ; 98(7): 493-500, 2020.
Article in English | MEDLINE | ID: mdl-32294655

ABSTRACT

INTRODUCTION: Colorectal cancer (CRC) is the third most common cancer worldwide, accounting for 10% of the global cancer burden. Rectal cancer accounts for around 30% of CRC cases, and patients with resectable rectal cancer are often given preoperative radiotherapy (PRT) to reduce the rate of local recurrence. The human plasma proteome is an exceptionally complex proteome and ideal to study due to its ability to reflect the presence of diseases such as cancer and the ease of obtaining blood samples. Previous proteomic studies involving rectal cancer patients have mostly focused on the identification of proteins involved in resistance to radiotherapy. OBJECTIVE: The aim of this study was to investigate the overall effects of PRT on plasma protein expression in rectal cancer patients, as there is a lack of such studies. METHODS: Here, we have used mass spectrometry and subsequent statistical analyses to analyze the plasma samples of 30 rectal cancer patients according to PRT status (positive or negative) and tumor stage (II or III). RESULTS AND CONCLUSIONS: We discovered 42 proteins whose levels differed significantly between stage II and III rectal cancer patients who did or did not receive PRT. This study shows that PRT, although localized to the pelvis, leads to measurable, tumor stage-specific changes in plasma protein expression. Future studies of plasma proteins should, when relevant, take this into account and be aware of the widespread effects that PRT has on the plasma proteome.


Subject(s)
Blood Proteins/radiation effects , Preoperative Care , Proteome/radiation effects , Rectal Neoplasms/radiotherapy , Chromatography, Liquid , Finland , Hospitals, University , Humans , Mass Spectrometry , Neoplasm Staging , Pilot Projects , Proteomics/methods , Rectal Neoplasms/blood , Retrospective Studies
15.
Proteomics Clin Appl ; 13(4): e1800173, 2019 07.
Article in English | MEDLINE | ID: mdl-30688043

ABSTRACT

PURPOSE: The purpose of this study is to elucidate the effect of excess body weight and liver fat on the plasma proteome without interference from genetic variation. EXPERIMENTAL DESIGN: The effect of excess body weight is assessed in young, healthy monozygotic twins from pairs discordant for body mass index (intrapair difference (Δ) in BMI > 3 kg m-2 , n = 26) with untargeted LC-MS proteomics quantification. The effect of liver fat is interrogated via subgroup analysis of the BMI-discordant twin cohort: liver fat discordant pairs (Δliver fat > 2%, n = 12) and liver fat concordant pairs (Δliver fat < 2%, n = 14), measured by magnetic resonance spectroscopy. RESULTS: Seventy-five proteins are differentially expressed, with significant enrichment for complement and inflammatory response pathways in the heavier co-twins. The complement dysregulation is found in obesity in both the liver fat subgroups. The complement and inflammatory proteins are significantly associated with adiposity measures, insulin resistance and impaired lipids. CONCLUSIONS AND CLINICAL RELEVANCE: The early pathophysiological mechanisms in obesity are incompletely understood. It is shown that aberrant complement regulation in plasma is present in very early stages of clinically healthy obese persons, independently of liver fat and in the absence of genetic variation that typically confounds human studies.


Subject(s)
Body Mass Index , Complement System Proteins/metabolism , Insulin Resistance , Obesity/blood , Twins, Monozygotic , Adult , Female , Humans , Male
16.
FASEB Bioadv ; 1(12): 723-730, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32123817

ABSTRACT

Colorectal cancer (CRC) stands for 10% of the worldwide cancer burden and has recently become the second most common cause of cancer death. The 5-year survival rate depends mainly on stage at diagnosis. Mass spectrometric proteomic analysis is widely used to study the plasma proteome, which is complex and contains multitudes of proteins. In this study, we have used Ultra Performance Liquid Chromatography-Ultra Definition Mass Spectrometry (UPLC-UDMSE)-based proteomics to analyze plasma samples from 76 CRC patients. We identified several plasma proteins, such as CP, TVP23C, FETUB, and IGFBP3, of which altered levels led to significant differences in survival, as seen by Cox regression and Kaplan-Meier analysis. Additionally, during Cox regression analysis, samples were adjusted for age and/or tumor stage, enabling stringent analysis. These proteins, although in need of further validation, could be of use during patient follow-up, as their levels can non-invasively be measured from blood samples, and could be of use in predicting patient outcome. Several of these proteins additionally have roles in metabolism and inflammation, two processes central to the development and progression of cancer, further indicating their importance in cancer.

17.
Oral Oncol ; 86: 206-215, 2018 11.
Article in English | MEDLINE | ID: mdl-30409303

ABSTRACT

OBJECTIVES: No prognostic or predictive biomarkers for oral squamous cell carcinoma (OSCC) exist. We aimed to discover novel proteins, altered in OSCC, to be further investigated as potential biomarkers, and to improve understanding about pathways involved in OSCC. MATERIALS AND METHODS: Proteomic signatures of seven paired healthy and OSCC tissue samples were identified using ultra-definition quantitative mass spectrometry, then analysed and compared using Anova, principal component analysis, hierarchical clustering and OPLS-DA modelling. A selection of significant proteins that were also altered in the serum from a previous study (PMID: 28632724) were validated immunohistochemically on an independent cohort (n = 66) to confirm immunopositivity and location within tumour tissue. Ingenuity Pathways Analysis was employed to identify altered pathways. RESULTS: Of 829 proteins quantified, 257 were significant and 72 were able to classify healthy vs OSCC using OPLS-DA modelling. We identified 19 proteins not previously known to be upregulated in OSCC, including prosaposin and alpha-taxilin. KIAA1217 and NDRG1 were upregulated in stage IVa compared with stage I tumours. Altered pathways included calcium signalling, cellular movement, haematological system development and function, and immune cell trafficking, and involved NF-kB and MAPK networks. CONCLUSIONS: We found a set of proteins reliably separating OSCC tumour from healthy tissue, and multiple proteins differing between stage I and stage IVa OSCC. These potential biomarkers can be studied and validated in larger cohorts.


Subject(s)
Biomarkers, Tumor/metabolism , Proteomics/methods , Squamous Cell Carcinoma of Head and Neck/diagnosis , Tongue Neoplasms/diagnosis , Tongue/pathology , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Mass Spectrometry , Middle Aged , Neoplasm Staging , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/surgery , Tissue Array Analysis , Tongue/surgery , Tongue Neoplasms/pathology , Tongue Neoplasms/surgery
18.
Proteomics Clin Appl ; 12(6): e1800061, 2018 11.
Article in English | MEDLINE | ID: mdl-29992770

ABSTRACT

PURPOSE: There are no blood biomarkers to detect early-stage oral cavity squamous cell carcinoma (OSCC) prior to clinical signs. Most OSCC incidence is associated with significant morbidity and poor survival. The authors aimed to use mass-spectrometry (MS) technology to find specific N-glycopeptides potentially serving as serum biomarkers for preclinical OSCC screening. EXPERIMENTAL DESIGN: Serum samples from 14 patients treated for OSCC (stage I or stage IV) with 12 age- and sex-matched controls are collected. Quantitative label-free N-glycoproteomics is performed, with MS/MS analysis of the statistically significantly different N-glycopeptides. RESULTS: Combined with a database search using web-based software (GlycopeptideID), MS/MS provided detailed N-glycopeptide information, including glycosylation site, glycan composition, and proposed structures. Thirty-eight tryptic N-glycopeptides are identified, having 19 unique N-glycosylation sites representing 14 glycoproteins. OSCC patients, including stage I tumors, can be differentiated from healthy controls based on the expression levels of these glycoforms. N-glycopeptides of IgG1, IgG4, haptoglobin, and transferrin have statistically significant different abundances between cases and controls. CONCLUSIONS AND CLINICAL RELEVANCE: The authors are the first to suggest specific N-glycopeptides to serve as potential serum biomarkers to detect preclinical OSCC in patients. These N-glycopeptides are the lead candidates for validation as future diagnostic modalities of OSCC as early as stage I.


Subject(s)
Biomarkers, Tumor/blood , Early Detection of Cancer , Glycopeptides/blood , Tongue Neoplasms/blood , Adult , Aged , Female , Glycosylation , Haptoglobins/metabolism , Healthy Volunteers , Humans , Immunoglobulin G/blood , Male , Middle Aged , Neoplasm Staging , Polysaccharides/chemistry , Protein Disulfide-Isomerases/blood , Transferrin/metabolism
19.
Br J Cancer ; 119(2): 200-212, 2018 07.
Article in English | MEDLINE | ID: mdl-29961760

ABSTRACT

BACKGROUND: The increasing incidence of oropharyngeal squamous cell carcinoma (OPSCC) is mainly related to human papillomavirus (HPV) infection. As OPSCCs are often diagnosed at an advanced stage, mortality and morbidity remain high. There are no diagnostic biomarkers for early detection of OPSCC. METHODS: Serum from 25 patients with stage I-II OPSCC, and 12 healthy controls, was studied with quantitative label-free proteomics using ultra-definition MSE. Statistical analyses were performed to identify the proteins most reliably distinguishing early-stage OPSCCs from controls. P16 was used as a surrogate marker for HPV. P16-positive and P16-negative tumours were analysed separately. RESULTS: With two or more unique proteins per identification, 176 proteins were quantified. A clear separation between patients with early-stage tumours and controls was seen in principal component analysis. Latent structures discriminant analysis identified 96 proteins, most reliably differentiating OPSCC patients from controls, with 13 upregulated and 83 downregulated proteins in study cases. The set of proteins was studied further with network, pathway and protein-protein interaction analyses, and found to participate in lipid metabolism, for example. CONCLUSIONS: We found a set of serum proteins distinguishing early-stage OPSCC from healthy individuals, and suggest a protein set for further evaluation as a diagnostic biomarker panel for OPSCC.


Subject(s)
Biomarkers, Tumor/blood , Blood Proteins/genetics , Oropharyngeal Neoplasms/blood , Proteomics , Adult , Aged , Chromatography, Liquid , Early Detection of Cancer , Female , Humans , Male , Mass Spectrometry , Middle Aged , Neoplasm Staging , Oropharyngeal Neoplasms/genetics , Oropharyngeal Neoplasms/pathology , Oropharyngeal Neoplasms/virology , Papillomaviridae/pathogenicity , Protein Interaction Maps/genetics , Signal Transduction/genetics
20.
PLoS One ; 13(4): e0195354, 2018.
Article in English | MEDLINE | ID: mdl-29630649

ABSTRACT

Over 1.4 million people are diagnosed with colorectal cancer (CRC) each year, making it the third most common cancer in the world. Increased screening and therapeutic modalities including improved combination treatments have reduced CRC mortality, although incidence and mortality rates are still increasing in some areas. Serum-based biomarkers are mainly used for follow-up of cancer, and are ideal due to the ease and minimally invasive nature of sample collection. Unfortunately, CEA and other serum markers have too low sensitivity for screening and preoperative diagnostic purposes. Increasing interest is focused on the possible use of biomarkers for predicting treatment response and prognosis in cancer. In this study, we have performed mass spectrometry analysis (UPLC-UDMSE) of serum samples from 19 CRC patients. Increased levels of C-reactive protein (CRP), which occur during local inflammation and the presence of a systemic inflammatory response, have been linked to poor prognosis in CRC patients. We chose to analyze samples according to CRP values by dividing them into the categories CRP <30 and >30, and, separately, according to short and long 5-year survival. The aim was to discover differentially expressed proteins associated with poor prognosis and shorter survival. We quantified 256 proteins and performed detailed statistical analyses and pathway analysis. We discovered multiple proteins that are up- or downregulated in patients with CRP >30 as compared to CRP <30 and in patients with short as compared to long 5-year survival. Pathways that were enriched include LXR/RXR activation, FXR/RXR activation, complement and coagulation cascades and acute phase signaling response, with some of the proteins we identified having roles in these pathways. In this study, we have identified multiple proteins, of which a few have been previously identified as potential biomarkers, and others that have been identified as potential biomarkers for CRC for the first time, to the best of our knowledge. While these proteins still need to be validated in larger patient series, this pilot study will pave the way for future studies aiming to provide better biomarkers for patients with CRC.


Subject(s)
Biomarkers, Tumor/blood , C-Reactive Protein/metabolism , Colorectal Neoplasms/blood , Colorectal Neoplasms/mortality , Adult , Aged , Aged, 80 and over , Chromatography, High Pressure Liquid , Female , Finland/epidemiology , Humans , Male , Middle Aged , Pilot Projects , Prognosis , Protein Interaction Maps , Proteomics , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...