ABSTRACT
History and environment shape crop biodiversity, particularly in areas with vulnerable human communities and ecosystems. Tracing crop biodiversity over time helps understand how rural societies cope with anthropogenic or climatic changes. Exceptionally well preserved ancient DNA of quinoa (Chenopodium quinoa Willd.) from the cold and arid Andes of Argentina has allowed us to track changes and continuities in quinoa diversity over 18 centuries, by coupling genotyping of 157 ancient and modern seeds by 24 SSR markers with cluster and coalescence analyses. Cluster analyses revealed clear population patterns separating modern and ancient quinoas. Coalescence-based analyses revealed that genetic drift within a single population cannot explain genetic differentiation among ancient and modern quinoas. The hypothesis of a genetic bottleneck related to the Spanish Conquest also does not seem to apply at a local scale. Instead, the most likely scenario is the replacement of preexisting quinoa gene pools with new ones of lower genetic diversity. This process occurred at least twice in the last 18 centuries: first, between the 6th and 12th centuries-a time of agricultural intensification well before the Inka and Spanish conquests-and then between the 13th century and today-a period marked by farming marginalization in the late 19th century likely due to a severe multidecadal drought. While these processes of local gene pool replacement do not imply losses of genetic diversity at the metapopulation scale, they support the view that gene pool replacement linked to social and environmental changes can result from opposite agricultural trajectories.
Subject(s)
Chenopodium quinoa/genetics , Genotyping Techniques/methods , Alleles , Argentina , Biodiversity , DNA, Ancient/analysis , Gene Pool , Genetic Variation/genetics , Genotype , Genotyping Techniques/history , History, 18th Century , SeedsABSTRACT
Archaeological research suggests significant human occupation in the arid Andean highlands during the 13th to 15th centuries, whereas paleoclimatic studies reveal prolonged drier and colder conditions during that period. Which subsistence strategy supported local societies in this harsh environment? Our field and aerial surveys of archaeological dwelling sites, granaries, and croplands provide the first evidence of extended pre-Hispanic agriculture supporting dense human populations in the arid Andes of Bolivia. This unique agricultural system associated with quinoa cultivation was unirrigated, consisting of simple yet extensive landscape modifications. It relied on highly specific environmental knowledge and a set of water-saving practices, including microterracing and biennial fallowing. This intense agricultural activity developed during a period of unfavorable climatic change on a regional and global scale, illustrative of efficient adaptive strategies to cope with this climatic change.
Subject(s)
Agriculture/history , Agriculture/methods , Crops, Agricultural/history , Archaeology , Bolivia , Chenopodium quinoa , Climate Change , History, 15th Century , History, Medieval , Humans , Rain , Satellite ImageryABSTRACT
Here, we examined the colonization by fungal root symbionts in the cultivated Andean grain Chenopodium quinoa and in 12 species that dominate plant communities in the Bolivian Altiplano above 3,700 m elevation and explore for the possible relationships between fungal colonization and fine root proportion. The 12 most abundant species in the study area were consistently colonized by AMF and DSE. In contrast, the annual Andean grain C. quinoa showed negligible or absence of mycorrhizal fungi colonizing roots. On the other hand, C. quinoa, Junelia seriphioides and Chersodoma jodopappa were infected to a varying degree by the root pathogen Olpidium sp. We observed no relationship between AMF and DSE colonization and proportion of fine roots in the root system, but instead, the ratio between DSE and AMF colonization (ratio DSE/AMF) negatively related with proportion of fine roots. Our findings support the hypothesis regarding the importance of DSE at high altitudes and suggest a functional relationship between the rate of DSE/AMF and proportion of fine roots. The colonization by the root pathogen Olpidium sp. in C. quinoa deserves further study since this Andean grain is increasingly important for the local economy in these marginal areas.