Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38746274

ABSTRACT

The explosion of sequence data has allowed the rapid growth of protein language models (pLMs). pLMs have now been employed in many frameworks including variant-effect and peptide-specificity prediction. Traditionally, for protein-protein or peptide-protein interactions (PPIs), corresponding sequences are either co-embedded followed by post-hoc integration or the sequences are concatenated prior to embedding. Interestingly, no method utilizes a language representation of the interaction itself. We developed an interaction LM (iLM), which uses a novel language to represent interactions between protein/peptide sequences. Sliding Window Interaction Grammar (SWING) leverages differences in amino acid properties to generate an interaction vocabulary. This vocabulary is the input into a LM followed by a supervised prediction step where the LM's representations are used as features. SWING was first applied to predicting peptide:MHC (pMHC) interactions. SWING was not only successful at generating Class I and Class II models that have comparable prediction to state-of-the-art approaches, but the unique Mixed Class model was also successful at jointly predicting both classes. Further, the SWING model trained only on Class I alleles was predictive for Class II, a complex prediction task not attempted by any existing approach. For de novo data, using only Class I or Class II data, SWING also accurately predicted Class II pMHC interactions in murine models of SLE (MRL/lpr model) and T1D (NOD model), that were validated experimentally. To further evaluate SWING's generalizability, we tested its ability to predict the disruption of specific protein-protein interactions by missense mutations. Although modern methods like AlphaMissense and ESM1b can predict interfaces and variant effects/pathogenicity per mutation, they are unable to predict interaction-specific disruptions. SWING was successful at accurately predicting the impact of both Mendelian mutations and population variants on PPIs. This is the first generalizable approach that can accurately predict interaction-specific disruptions by missense mutations with only sequence information. Overall, SWING is a first-in-class generalizable zero-shot iLM that learns the language of PPIs.

2.
Cancer Immunol Res ; 12(5): 515, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38557780

ABSTRACT

The pivotal role of T cell responses has been well studied in both protective and destructive scenarios. T cells recognize peptide epitopes presented on Human Leukocyte Antigens (HLA) through their surface T cell receptors (TCR). Advances in single-cell RNA sequencing have identified millions of TCRs, but only a minuscule fraction of them have known epitopes. Recently, cell-based T cell antigen discovery platforms have emerged onto the landscape. Here, Jin and colleagues, report a novel antigen discovery platform called Tsyn-seq that relies on sequencing TCR-peptide-HLA-induced synapses for genome-wide epitope screening. See related article by Jin et al., p. 530 (3).


Subject(s)
Receptors, Antigen, T-Cell , T-Lymphocytes , Humans , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Immunological Synapses/immunology , HLA Antigens/genetics , HLA Antigens/immunology , High-Throughput Nucleotide Sequencing
3.
Nat Methods ; 21(5): 846-856, 2024 May.
Article in English | MEDLINE | ID: mdl-38658646

ABSTRACT

CD4+ T cells recognize peptide antigens presented on class II major histocompatibility complex (MHC-II) molecules to carry out their function. The remarkable diversity of T cell receptor sequences and lack of antigen discovery approaches for MHC-II make profiling the specificities of CD4+ T cells challenging. We have expanded our platform of signaling and antigen-presenting bifunctional receptors to encode MHC-II molecules presenting covalently linked peptides (SABR-IIs) for CD4+ T cell antigen discovery. SABR-IIs can present epitopes to CD4+ T cells and induce signaling upon their recognition, allowing a readable output. Furthermore, the SABR-II design is modular in signaling and deployment to T cells and B cells. Here, we demonstrate that SABR-IIs libraries presenting endogenous and non-contiguous epitopes can be used for antigen discovery in the context of type 1 diabetes. SABR-II libraries provide a rapid, flexible, scalable and versatile approach for de novo identification of CD4+ T cell ligands from single-cell RNA sequencing data using experimental and computational approaches.


Subject(s)
CD4-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , Histocompatibility Antigens Class II , CD4-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Animals , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/chemistry , Mice , Humans , Diabetes Mellitus, Type 1/immunology , Peptides/immunology , Peptides/chemistry , Antigen Presentation/immunology , Receptors, Antigen, T-Cell/immunology , Mice, Inbred NOD , Single-Cell Analysis/methods
4.
Nat Methods ; 21(5): 835-845, 2024 May.
Article in English | MEDLINE | ID: mdl-38374265

ABSTRACT

Modern multiomic technologies can generate deep multiscale profiles. However, differences in data modalities, multicollinearity of the data, and large numbers of irrelevant features make analyses and integration of high-dimensional omic datasets challenging. Here we present Significant Latent Factor Interaction Discovery and Exploration (SLIDE), a first-in-class interpretable machine learning technique for identifying significant interacting latent factors underlying outcomes of interest from high-dimensional omic datasets. SLIDE makes no assumptions regarding data-generating mechanisms, comes with theoretical guarantees regarding identifiability of the latent factors/corresponding inference, and has rigorous false discovery rate control. Using SLIDE on single-cell and spatial omic datasets, we uncovered significant interacting latent factors underlying a range of molecular, cellular and organismal phenotypes. SLIDE outperforms/performs at least as well as a wide range of state-of-the-art approaches, including other latent factor approaches. More importantly, it provides biological inference beyond prediction that other methods do not afford. Thus, SLIDE is a versatile engine for biological discovery from modern multiomic datasets.


Subject(s)
Machine Learning , Humans , Computational Biology/methods , Animals , Single-Cell Analysis/methods , Algorithms
5.
Mol Metab ; 78: 101809, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37734713

ABSTRACT

BACKGROUND: T1D is an autoimmune disease in which pancreatic islets of Langerhans are infiltrated by immune cells resulting in the specific destruction of insulin-producing islet beta cells. Our understanding of the factors leading to islet infiltration and the interplay of the immune cells with target beta cells is incomplete, especially in human disease. While murine models of T1D have provided crucial information for both beta cell and autoimmune cell function, the translation of successful therapies in the murine model to human disease has been a challenge. SCOPE OF REVIEW: Here, we discuss current state of the art and consider knowledge gaps concerning the interface of the islet beta cell with immune infiltrates, with a focus on T cells. We discuss pancreatic and immune cell phenotypes and their impact on cell function in health and disease, which we deem important to investigate further to attain a more comprehensive understanding of human T1D disease etiology. MAJOR CONCLUSIONS: The last years have seen accelerated development of approaches that allow comprehensive study of human T1D. Critically, recent studies have contributed to our revised understanding that the pancreatic beta cell assumes an active role, rather than a passive position, during autoimmune disease progression. The T cell-beta cell interface is a critical axis that dictates beta cell fate and shapes autoimmune responses. This includes the state of the beta cell after processing internal and external cues (e.g., stress, inflammation, genetic risk) that that contributes to the breaking of tolerance by hyperexpression of human leukocyte antigen (HLA) class I with presentation of native and neoepitopes and secretion of chemotactic factors to attract immune cells. We anticipate that emerging insights about the molecular and cellular aspects of disease initiation and progression processes will catalyze the development of novel and innovative intervention points to provide additional therapies to individuals affected by T1D.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Islets of Langerhans , Humans , Mice , Animals , Diabetes Mellitus, Type 1/metabolism , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Pancreas/metabolism , Risk Factors
6.
Cell ; 186(9): 1846-1862.e26, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37028428

ABSTRACT

The use of probiotics by cancer patients is increasing, including among those undergoing immune checkpoint inhibitor (ICI) treatment. Here, we elucidate a critical microbial-host crosstalk between probiotic-released aryl hydrocarbon receptor (AhR) agonist indole-3-aldehyde (I3A) and CD8 T cells within the tumor microenvironment that potently enhances antitumor immunity and facilitates ICI in preclinical melanoma. Our study reveals that probiotic Lactobacillus reuteri (Lr) translocates to, colonizes, and persists within melanoma, where via its released dietary tryptophan catabolite I3A, it locally promotes interferon-γ-producing CD8 T cells, thereby bolstering ICI. Moreover, Lr-secreted I3A was both necessary and sufficient to drive antitumor immunity, and loss of AhR signaling within CD8 T cells abrogated Lr's antitumor effects. Further, a tryptophan-enriched diet potentiated both Lr- and ICI-induced antitumor immunity, dependent on CD8 T cell AhR signaling. Finally, we provide evidence for a potential role of I3A in promoting ICI efficacy and survival in advanced melanoma patients.


Subject(s)
Limosilactobacillus reuteri , Melanoma , Tumor Microenvironment , Humans , Diet , Immune Checkpoint Inhibitors , Limosilactobacillus reuteri/metabolism , Melanoma/therapy , Tryptophan/metabolism , CD8-Positive T-Lymphocytes/immunology , Receptors, Aryl Hydrocarbon/agonists
7.
Cell Rep Med ; 2(12): 100476, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34873589

ABSTRACT

Despite extensive analyses, there remains an urgent need to delineate immune cell states that contribute to mortality in people critically ill with COVID-19. Here, we present high-dimensional profiling of blood and respiratory samples from people with severe COVID-19 to examine the association between cell-linked molecular features and mortality outcomes. Peripheral transcriptional profiles by single-cell RNA sequencing (RNA-seq)-based deconvolution of immune states are associated with COVID-19 mortality. Further, persistently high levels of an interferon signaling module in monocytes over time lead to subsequent concerted upregulation of inflammatory cytokines. SARS-CoV-2-infected myeloid cells in the lower respiratory tract upregulate CXCL10, leading to a higher risk of death. Our analysis suggests a pivotal role for viral-infected myeloid cells and protracted interferon signaling in severe COVID-19.


Subject(s)
COVID-19/immunology , COVID-19/mortality , Lung/immunology , SARS-CoV-2/pathogenicity , Aged , COVID-19/blood , COVID-19/virology , Critical Illness , Cytokines/blood , Gene Regulatory Networks , Humans , Inflammation , Lung/virology , Models, Theoretical , Monocytes/immunology , Myeloid Cells/immunology , Reproducibility of Results , Viral Load
8.
bioRxiv ; 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33594364

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection presents with varied clinical manifestations1, ranging from mild symptoms to acute respiratory distress syndrome (ARDS) with high mortality2,3. Despite extensive analyses, there remains an urgent need to delineate immune cell states that contribute to mortality in severe COVID-19. We performed high-dimensional cellular and molecular profiling of blood and respiratory samples from critically ill COVID-19 patients to define immune cell genomic states that are predictive of outcome in severe COVID-19 disease. Critically ill patients admitted to the intensive care unit (ICU) manifested increased frequencies of inflammatory monocytes and plasmablasts that were also associated with ARDS not due to COVID-19. Single-cell RNAseq (scRNAseq)-based deconvolution of genomic states of peripheral immune cells revealed distinct gene modules that were associated with COVID-19 outcome. Notably, monocytes exhibited bifurcated genomic states, with expression of a cytokine gene module exemplified by CCL4 (MIP-1ß) associated with survival and an interferon signaling module associated with death. These gene modules were correlated with higher levels of MIP-1ß and CXCL10 levels in plasma, respectively. Monocytes expressing genes reflective of these divergent modules were also detectable in endotracheal aspirates. Machine learning algorithms identified the distinctive monocyte modules as part of a multivariate peripheral immune system state that was predictive of COVID-19 mortality. Follow-up analysis of the monocyte modules on ICU day 5 was consistent with bifurcated states that correlated with distinct inflammatory cytokines. Our data suggests a pivotal role for monocytes and their specific inflammatory genomic states in contributing to mortality in life-threatening COVID-19 disease and may facilitate discovery of new diagnostics and therapeutics.

9.
Nat Methods ; 18(8): 873-880, 2021 08.
Article in English | MEDLINE | ID: mdl-32632239

ABSTRACT

T cells respond to threats in an antigen-specific manner using T cell receptors (TCRs) that recognize short peptide antigens presented on major histocompatibility complex (MHC) proteins. The TCR-peptide-MHC interaction mediated between a T cell and its target cell dictates its function and thereby influences its role in disease. A lack of approaches for antigen discovery has limited the fundamental understanding of the antigenic landscape of the overall T cell response. Recent advances in high-throughput sequencing, mass cytometry, microfluidics and computational biology have led to a surge in approaches to address the challenge of T cell antigen discovery. Here, we summarize the scope of this challenge, discuss in depth the recent exciting work and highlight the outstanding questions and remaining technical hurdles in this field.


Subject(s)
Antigens/immunology , Major Histocompatibility Complex/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Animals , Humans
10.
Nat Methods ; 16(2): 191-198, 2019 02.
Article in English | MEDLINE | ID: mdl-30700902

ABSTRACT

CD8+ T cells recognize and eliminate tumors in an antigen-specific manner. Despite progress in characterizing the antitumor T cell repertoire and function, the identification of target antigens remains a challenge. Here we describe the use of chimeric receptors called signaling and antigen-presenting bifunctional receptors (SABRs) in a cell-based platform for T cell receptor (TCR) antigen discovery. SABRs present an extracellular complex comprising a peptide and major histocompatibility complex (MHC), and induce intracellular signaling via a TCR-like signal after binding with a cognate TCR. We devised a strategy for antigen discovery using SABR libraries to screen thousands of antigenic epitopes. We validated this platform by identifying the targets recognized by public TCRs of known specificities. Moreover, we extended this approach for personalized neoantigen discovery.


Subject(s)
Antigen Presentation , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Antigen-Presenting Cells/cytology , Antigens/chemistry , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , CD8-Positive T-Lymphocytes/cytology , Cloning, Molecular , Coculture Techniques , Epitopes/chemistry , False Positive Reactions , Gene Library , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Immunotherapy/methods , Jurkat Cells , K562 Cells , Lectins, C-Type/metabolism , Major Histocompatibility Complex , Oligonucleotides/genetics , Peptides/chemistry
11.
Nat Methods ; 16(2): 183-190, 2019 02.
Article in English | MEDLINE | ID: mdl-30700903

ABSTRACT

T cell receptor (TCR) ligand discovery is essential for understanding and manipulating immune responses to tumors. We developed a cell-based selection platform for TCR ligand discovery that exploits a membrane transfer phenomenon called trogocytosis. We discovered that T cell membrane proteins are transferred specifically to target cells that present cognate peptide-major histocompatibility complex (MHC) molecules. Co-incubation of T cells expressing an orphan TCR with target cells collectively presenting a library of peptide-MHCs led to specific labeling of cognate target cells, enabling isolation of these target cells and sequencing of the cognate TCR ligand. We validated this method for two clinically employed TCRs and further used the platform to identify the cognate neoepitope for a subject-derived neoantigen-specific TCR. Thus, target cell trogocytosis is a robust tool for TCR ligand discovery that will be useful for studying basic tumor immunology and identifying new targets for immunotherapy.


Subject(s)
Antigens/chemistry , Genetic Techniques , Receptors, Antigen, T-Cell/chemistry , T-Lymphocytes/cytology , Adaptive Immunity , Animals , Biotinylation , DNA/analysis , Epitopes/chemistry , Gene Library , HEK293 Cells , Humans , Immunotherapy , Jurkat Cells , K562 Cells , Ligands , Mice , Peptides/chemistry , Phagocytosis , T-Lymphocytes/immunology
12.
Cell Rep ; 23(9): 2606-2616, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29847792

ABSTRACT

X-linked hyper-immunoglobulin M (hyper-IgM) syndrome (XHIM) is a primary immunodeficiency due to mutations in CD40 ligand that affect immunoglobulin class-switch recombination and somatic hypermutation. The disease is amenable to gene therapy using retroviral vectors, but dysregulated gene expression results in abnormal lymphoproliferation in mouse models, highlighting the need for alternative strategies. Here, we demonstrate the ability of both the transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) platforms to efficiently drive integration of a normal copy of the CD40L cDNA delivered by Adeno-Associated Virus. Site-specific insertion of the donor sequence downstream of the endogenous CD40L promoter maintained physiologic expression of CD40L while overriding all reported downstream mutations. High levels of gene modification were achieved in primary human hematopoietic stem cells (HSCs), as well as in cell lines and XHIM-patient-derived T cells. Notably, gene-corrected HSCs engrafted in immunodeficient mice at clinically relevant frequencies. These studies provide the foundation for a permanent curative therapy in XHIM.


Subject(s)
Gene Editing , Genetic Diseases, X-Linked/genetics , Hematopoietic Stem Cells/metabolism , Hyper-IgM Immunodeficiency Syndrome/genetics , Animals , Antigens, CD34/metabolism , Base Sequence , CD40 Ligand/metabolism , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , Cell Differentiation , Cell Line , Colony-Forming Units Assay , DNA Repair , DNA, Complementary/genetics , Humans , Mice , T-Lymphocytes/metabolism , Transcription Activator-Like Effector Nucleases/metabolism
13.
Proc Natl Acad Sci U S A ; 115(8): 1877-1882, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29437954

ABSTRACT

HIV controllers (HCs) are individuals who can naturally control HIV infection, partially due to potent HIV-specific CD8+ T cell responses. Here, we examined the hypothesis that superior function of CD8+ T cells from HCs is encoded by their T cell receptors (TCRs). We compared the functional properties of immunodominant HIV-specific TCRs obtained from HLA-B*2705 HCs and chronic progressors (CPs) following expression in primary T cells. T cells transduced with TCRs from HCs and CPs showed equivalent induction of epitope-specific cytotoxicity, cytokine secretion, and antigen-binding properties. Transduced T cells comparably, albeit modestly, also suppressed HIV infection in vitro and in humanized mice. We also performed extensive molecular dynamics simulations that provided a structural basis for similarities in cytotoxicity and epitope cross-reactivity. These results demonstrate that the differential abilities of HIV-specific CD8+ T cells from HCs and CPs are not genetically encoded in the TCRs alone and must depend on additional factors.


Subject(s)
CD8-Positive T-Lymphocytes/physiology , Epitopes, T-Lymphocyte/genetics , HIV Infections/immunology , HIV-1/immunology , Receptors, Antigen, T-Cell/genetics , Cloning, Molecular , Gene Expression Regulation/immunology , HEK293 Cells , HLA-B27 Antigen , Humans , Jurkat Cells
14.
Hum Gene Ther Methods ; 28(6): 291-301, 2017 12.
Article in English | MEDLINE | ID: mdl-28870117

ABSTRACT

Viruses have evolved specialized molecular mechanisms to transfer their genome efficiently into host cells. Viruses can be repurposed into viral vectors to achieve controlled gene transfer to desired cells. One of the most popular classes of vectors, lentiviral vectors (LVs), transduce mammalian cells efficiently. LVs are pseudotyped with various heterologous viral envelopes to alter their tropism. While the most common example is the envelope glycoprotein from vesicular stomatitis virus (VSVG), many other viral proteins have also been used. Pseudotyping LVs with a diverse set of naturally occurring or engineered viral envelopes has allowed targeted transduction of specific cell types. Many exciting studies are further uncovering new specificities and shortcomings of pseudotyped LVs. These studies will expand the toolbox to make LVs that cater to the specific requirements of transduction. This review provides a comprehensive overview of various viral envelope pseudotypes used with LVs, their specificities, advantages, and drawbacks.


Subject(s)
Genetic Vectors/genetics , Lentivirus/genetics , Transduction, Genetic/methods , Genetic Therapy/methods , Lentivirus/classification , Lentivirus/physiology , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism
15.
Curr Opin Biotechnol ; 48: 142-152, 2017 12.
Article in English | MEDLINE | ID: mdl-28494274

ABSTRACT

Immunotherapies are yielding effective treatments for several previously untreatable cancers. Until recently, vaccines and adoptive cell therapies have been designed to target public tumor antigens common to multiple patients rather than private antigens specific to a single patient. Due to the difficulty of identifying public antigens that are expressed exclusively on tumor cells, these studies have yielded both clinical successes and serious immune-related adverse events. Multiple avenues of research now underscore the centrality of tumor-specific mutated private antigens to endogenous anti-tumor immunity. Immunotherapies that target these neoantigens may enable safer and more durable tumor regression, but personalized targeting presents a number of challenges. Foremost among these is to develop processes that accelerate advancement from neoantigen discovery to use of these neoantigens as vaccines or as targets for adoptive cell therapies. Exome sequencing has facilitated discovery of neoantigens for melanoma and other highly mutated cancers. New technologies - possibly proceeding from T cell receptor repertoire sequencing - are needed to identify antigens for cancers with low mutational burden and few neoantigens. In this review, we discuss progress toward personalizing T cell-mediated immunotherapy for cancer as well as challenges going forward.


Subject(s)
Antigens, Neoplasm/immunology , Immunotherapy , Neoplasms/immunology , Neoplasms/therapy , T-Lymphocytes/immunology , Humans
16.
Blood ; 125(17): 2597-604, 2015 Apr 23.
Article in English | MEDLINE | ID: mdl-25733580

ABSTRACT

Sickle cell disease (SCD) is characterized by a single point mutation in the seventh codon of the ß-globin gene. Site-specific correction of the sickle mutation in hematopoietic stem cells would allow for permanent production of normal red blood cells. Using zinc-finger nucleases (ZFNs) designed to flank the sickle mutation, we demonstrate efficient targeted cleavage at the ß-globin locus with minimal off-target modification. By co-delivering a homologous donor template (either an integrase-defective lentiviral vector or a DNA oligonucleotide), high levels of gene modification were achieved in CD34(+) hematopoietic stem and progenitor cells. Modified cells maintained their ability to engraft NOD/SCID/IL2rγ(null) mice and to produce cells from multiple lineages, although with a reduction in the modification levels relative to the in vitro samples. Importantly, ZFN-driven gene correction in CD34(+) cells from the bone marrow of patients with SCD resulted in the production of wild-type hemoglobin tetramers.


Subject(s)
Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/therapy , Genetic Therapy , Hematopoietic Stem Cells/metabolism , Mutation , beta-Globins/genetics , Anemia, Sickle Cell/pathology , Animals , Antigens, CD34/analysis , Base Sequence , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology , Cells, Cultured , Endodeoxyribonucleases/metabolism , Fetal Blood/transplantation , Genetic Loci , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/pathology , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Molecular Sequence Data , Zinc Fingers
17.
Hum Gene Ther ; 25(7): 599-608, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24568341

ABSTRACT

Integrase-defective lentiviral vectors (IDLVs) have been of limited success in the delivery of zinc finger nucleases (ZFNs) to human cells, due to low expression. A reason for reduced gene expression has been proposed to involve the epigenetic silencing of vector genomes, carried out primarily by histone deacetylases (HDACs). In this study, we tested valproic acid (VPA), a known HDAC inhibitor (HDACi), for its ability to increase transgene expression from IDLVs, especially in the context of ZFN delivery. Using ZFNs targeting the human adenosine deaminase (ADA) gene in K562 cells, we demonstrated that treatment with VPA enhanced ZFN expression by up to 3-fold, resulting in improved allelic disruption at the ADA locus. Furthermore, three other U.S. Food and Drug Administration-approved HDACis (vorinostat, givinostat, and trichostatin-A) exhibited a similar effect on the activity of ZFN-IDLVs in K562 cells. In primary human CD34(+) cells, VPA- and vorinostat-treated cells showed higher levels of expression of both green fluorescent protein (GFP) as well as ZFNs from IDLVs. A major mechanism for the effects of HDAC inhibitors on improving expression was from their modulation of the cell cycle, and the influence of heterochromatinization was determined to be a lesser contributing factor.


Subject(s)
Deoxyribonucleases , Genetic Vectors , Histone Deacetylase Inhibitors/pharmacology , Integrases , Lentivirus , Transduction, Genetic , Viral Proteins , Deoxyribonucleases/biosynthesis , Deoxyribonucleases/genetics , Humans , K562 Cells , Zinc Fingers
18.
Mol Ther ; 21(9): 1705-17, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23857176

ABSTRACT

We investigated the use of integrase-defective lentiviral vectors (IDLVs) for transient delivery of zinc finger nucleases (ZFNs) and donor templates for site-specific modification of the human adenosine deaminase (hADA) gene. Initially, we constructed IDLVs carrying ZFN monomers (Single-IDLVs) and found them to be able to deliver their gene-editing payload to K562 cells successfully upon cotransduction, with minimal cytotoxicity. To simplify delivery, we designed an IDLV construct to deliver both ZFN monomers from the same vector (Double-IDLV). However, this construct in its original state was prone to rearrangements of the vector genome, resulting in greatly reduced functionality; this was due to recombination between highly similar ZFN monomers arranged in tandem. We modified the Double-IDLV constructs to reduce recombination and restored simultaneous delivery of both ZFNs. We also tested an IDLV construct for delivery of donor templates and demonstrated its efficacy for gene modification. In summary, we highlighted the importance of modifying vector design for co-delivery of highly similar sequences inherent to genome-editing nucleases, and demonstrated significant improvement in the use of IDLVs for delivery of ZFNs and donor templates for genome modification.


Subject(s)
Adenosine Deaminase/genetics , Endonucleases/metabolism , Genetic Vectors , Integrases/genetics , Lentivirus/genetics , Transduction, Genetic , Virus Integration , Endonucleases/genetics , Genetic Loci , Humans , K562 Cells , Lentivirus/metabolism , Zinc Fingers
19.
Stem Cells ; 27(9): 2059-68, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19544473

ABSTRACT

The transcriptional repressors Snail and Slug contribute to cancer progression by mediating epithelial-mesenchymal transition (EMT), which results in tumor cell invasion and metastases. We extend this current understanding to demonstrate their involvement in the development of resistance to radiation and paclitaxel. The process is orchestrated through the acquisition of a novel subset of gene targets that is repressed under conditions of stress, effectively inactivating p53-mediated apoptosis, while another subset of targets continues to mediate EMT. Repressive activities are complemented by a concurrent derepression of specific genes resulting in the acquisition of stem cell-like characteristics. Such cells are bestowed with three critical capabilities, namely EMT, resistance to p53-mediated apoptosis, and a self-renewal program, that together define the functionality and survival of metastatic cancer stem cells. EMT provides a mechanism of escape to a new, less adverse niche; resistance to apoptosis ensures cell survival in conditions of stress in the primary tumor; whereas acquisition of "stemness" ensures generation of the critical tumor mass required for progression of micrometastases to macrometastases. Our findings, besides achieving considerable expansion of the inventory of direct genes targets, more importantly demonstrate that such elegant cooperative modulation of gene regulation mediated by Snail and Slug is critical for a cancer cell to acquire stem cell characteristics toward resisting radiotherapy- or chemotherapy-mediated cellular stress, and this may be a determinative aspect of aggressive cancer metastases.


Subject(s)
Apoptosis/physiology , Drug Resistance, Neoplasm/physiology , Ovarian Neoplasms/metabolism , Transcription Factors/physiology , Tumor Suppressor Protein p53/metabolism , Apoptosis/genetics , Binding Sites , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Female , Flow Cytometry , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic/physiology , Genome, Human/genetics , Humans , Immunoblotting , In Situ Nick-End Labeling , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/radiotherapy , Promoter Regions, Genetic/genetics , Reverse Transcriptase Polymerase Chain Reaction , Snail Family Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...