Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Antonie Van Leeuwenhoek ; 116(10): 995-1007, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37584762

ABSTRACT

A novel planctomycetal strain, designated Pan189T, was isolated from biofilm material sampled close to Panarea Island in the Tyrrhenian Sea. Cells of strain Pan189T are round grain rice-shaped, form pink colonies and display typical planctomycetal characteristics including asymmetric cell division through polar budding and presence of crateriform structures. Cells bear a stalk opposite to the division pole and fimbriae cover the cell surface. Strain Pan189T has a mesophilic (optimum at 24 °C) and neutrophilic (optimum at pH 7.5) growth profile, is aerobic and heterotrophic. Under laboratory-scale cultivation conditions, it reached a generation time of 102 h (µmax = 0.0068 h-1), which places the strain among the slowest growing members of the phylum Planctomycetota characterized so far. The genome size of the strain is with 5.23 Mb at the lower limit among the family Planctomycetaceae (5.1-8.9 Mb). Phylogenetically, the strain represents a novel genus and species in the family Planctomycetaceae, order Planctomycetales, class Planctomycetia. We propose the name Stratiformator vulcanicus gen. nov., sp. nov. for the novel taxon, that is represented by the type strain Pan189T (= DSM 101711 T = CECT 30699 T).


Subject(s)
Fatty Acids , Planctomycetales , Fatty Acids/analysis , Sequence Analysis, DNA , Planctomycetales/genetics , Bacterial Typing Techniques , Biofilms , Phylogeny , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics
2.
Antonie Van Leeuwenhoek ; 115(3): 407-420, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35050438

ABSTRACT

For extending the current collection of axenic cultures of planctomycetes, we describe in this study the isolation and characterisation of strain Pan265T obtained from a red biofilm in the hydrothermal vent system close to the Lipari Islands in the Tyrrhenian Sea, north of Sicily, Italy. The strain forms light pink colonies on solid medium and grows as a viscous colloid in liquid culture, likely as the result of formation of a dense extracellular matrix observed during electron microscopy. Cells of the novel isolate are spherical, motile and divide by binary fission. Strain Pan265T is mesophilic (temperature optimum 30-33 °C), neutrophilic (pH optimum 7.0-8.0), aerobic and heterotrophic. The strain has a genome size of 3.49 Mb and a DNA G + C content of 63.9%. Phylogenetically, the strain belongs to the family Phycisphaeraceae, order Phycisphaerales, class Phycisphaerae. Our polyphasic analysis supports the delineation of strain Pan265T from the known genera in this family. Therefore, we conclude to assign strain Pan265T to a novel species within a novel genus, for which we propose the name Mucisphaera calidilacus gen. nov., sp. nov. The novel species is the type species of the novel genus and is represented by strain Pan265T (= DSM 100697T = CECT 30425T) as type strain.


Subject(s)
Fatty Acids , Hydrothermal Vents , Bacterial Typing Techniques , DNA, Bacterial/genetics , Fatty Acids/analysis , Islands , Phylogeny , Planctomycetes , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
3.
Microorganisms ; 9(7)2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34361930

ABSTRACT

Planctomycetes are bacteria that were long thought to be unculturable, of low abundance, and therefore neglectable in the environment. This view changed in recent years, after it was shown that members of the phylum Planctomycetes can be abundant in many aquatic environments, e.g., in the epiphytic communities on macroalgae surfaces. Here, we analyzed three different macroalgae from the North Sea and show that Planctomycetes is the most abundant bacterial phylum on the alga Fucus sp., while it represents a minor fraction of the surface-associated bacterial community of Ulva sp. and Laminaria sp. Especially dominant within the phylum Planctomycetes were Blastopirellula sp., followed by Rhodopirellula sp., Rubripirellula sp., as well as other Pirellulaceae and Lacipirellulaceae, but also members of the OM190 lineage. Motivated by the observed abundance, we isolated four novel planctomycetal strains to expand the collection of species available as axenic cultures since access to different strains is a prerequisite to investigate the success of planctomycetes in marine environments. The isolated strains constitute four novel species belonging to one novel and three previously described genera in the order Pirellulales, class Planctomycetia, phylum Planctomycetes.

4.
Environ Microbiol ; 23(3): 1379-1396, 2021 03.
Article in English | MEDLINE | ID: mdl-33331109

ABSTRACT

Waterbodies such as lakes and ponds are fragile environments affected by human influences. Suitable conditions can result in massive growth of phototrophs, commonly referred to as phytoplankton blooms. Such events benefit heterotrophic bacteria able to use compounds secreted by phototrophs or their biomass as major nutrient source. One example of such bacteria are Planctomycetes, which are abundant on the surfaces of marine macroscopic phototrophs; however, less data are available on their ecological roles in limnic environments. In this study, we followed a cultivation-independent deep sequencing approach to study the bacterial community composition during a cyanobacterial bloom event in a municipal duck pond. In addition to cyanobacteria, which caused the bloom event, members of the phylum Planctomycetes were significantly enriched in the cyanobacteria-attached fraction compared to the free-living fraction. Separate datasets based on isolated DNA and RNA point towards considerable differences in the abundance and activity of planctomycetal families, indicating different activity peaks of these families during the cyanobacterial bloom. Motivated by the finding that the sampling location harbours untapped bacterial diversity, we included a complementary cultivation-dependent approach and isolated and characterized three novel limnic strains belonging to the phylum Planctomycetes.


Subject(s)
Cyanobacteria , Phytoplankton , Ponds , Animals , Cyanobacteria/genetics , DNA, Bacterial/genetics , Ducks , Eutrophication , Humans , Lymnaea , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
5.
Antonie Van Leeuwenhoek ; 113(12): 1999-2018, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33231764

ABSTRACT

Thirteen novel planctomycetal strains were isolated from five different aquatic sampling locations. These comprise the hydrothermal vent system close to Panarea Island (Italy), a biofilm on the surface of kelp at Monterey Bay (CA, USA), sediment and algae on Mallorca Island (Spain) and Helgoland Island (Germany), as well as a seawater aquarium in Braunschweig, Germany. All strains were shown to belong to the genus Gimesia. Their genomes cover a size range from 7.22 to 8.29 Mb and have a G+C content between 45.1 and 53.7%. All strains are mesophilic (Topt 26-33 °C) with generation times between 12 and 32 h. Analysis of fatty acids yielded palmitic acid (16:0) and a fatty acid with the equivalent chain length of 15.817 as major compounds. While five of the novel strains belong to the already described species Gimesia maris and Gimesia chilikensis, the other strains belong to novel species, for which we propose the names Gimesia alba (type strain Pan241wT = DSM 100744T = LMG 31345T = CECT 9841T = VKM B-3430T), Gimesia algae (type strain Pan161T = CECT 30192T = STH00943T = LMG 29130T), Gimesia aquarii (type strain V144T = DSM 101710T = VKM B-3433T), Gimesia fumaroli (type strain Enr17T = DSM 100710T = VKM B-3429T) and Gimesia panareensis (type strain Enr10T = DSM 100416T = LMG 29082T). STH numbers refer to the Jena Microbial Resource Collection (JMRC).


Subject(s)
Aquatic Organisms/isolation & purification , Ecosystem , Planctomycetales/classification , Planctomycetales/isolation & purification , Aquatic Organisms/cytology , Aquatic Organisms/genetics , Aquatic Organisms/physiology , California , DNA, Bacterial , Fatty Acids/analysis , Germany , Italy , Phylogeny , Planctomycetales/cytology , Planctomycetales/physiology , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Spain
6.
Antonie Van Leeuwenhoek ; 113(12): 1979-1997, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33151460

ABSTRACT

Eight novel strains of the phylum Planctomycetes were isolated from different aquatic habitats. Among these habitats were the hydrothermal vent system close to Panarea Island, a public beach at Mallorca Island, the shore of Costa Brava (Spain), and three sites with brackish water in the Baltic Sea. The genome sizes of the novel strains range from 4.33 to 6.29 Mb with DNA G+C contents between 52.8 and 66.7%. All strains are mesophilic (Topt 24-30 °C) and display generation times between 17 and 94 h. All eight isolates constitute novel species of either already described or novel genera within the family Lacipirellulaceae. Two of the novel species, Posidoniimonas polymericola (type strain Pla123aT = DSM 103020T = LMG 29466T) and Bythopirellula polymerisocia (type strain Pla144T = DSM 104841T = VKM B-3442T), belong to established genera, while the other strains represent the novel genera Aeoliella gen. nov., Botrimarina gen. nov., Pirellulimonas gen. nov. and Pseudobythopirellula gen. nov. Based on our polyphasic analysis, we propose the species Aeoliella mucimassa sp. nov. (type strain Pan181T = DSM 29370T = LMG 31346T = CECT 9840T = VKM B-3426T), Botrimarina colliarenosi sp. nov. (type strain Pla108T = DSM 103355T = LMG 29803T), Botrimarina hoheduenensis sp. nov. (type strain Pla111T = DSM 103485T = STH00945T, Jena Microbial Resource Collection JMRC), Botrimarina mediterranea sp. nov. (type strain Spa11T = DSM 100745T = LMG 31350T = CECT 9852T = VKM B-3431T), Pirellulimonas nuda sp. nov. (type strain Pla175T = DSM 109594T = CECT 9871T = VKM B-3448T) and Pseudobythopirellula maris sp. nov. (type strain Mal64T = DSM 100832T = LMG 29020T).


Subject(s)
Bacteria , Fatty Acids , Bacteria/genetics , Bacterial Typing Techniques , DNA, Bacterial/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
9.
Front Microbiol ; 11: 1408, 2020.
Article in English | MEDLINE | ID: mdl-32765432

ABSTRACT

Bacteria of the phylum Planctomycetes occur ubiquitously in marine environments and play important roles in the marine nitrogen- and carbon cycle, for example as scavengers after phototrophic blooms. Here, we describe the isolation and characterization of the planctomycetal strain Enr13T isolated from a Posidonia sp. biofilm obtained from seawater sediment close to Panarea Island, Italy. Phylogenetic tree reconstruction based on 16S rRNA gene sequences and multi-locus sequence analysis supports the delineation of strain Enr13T from characterized species part of the phylum of Planctomycetes. HPLC-MS analysis of culture broth obtained from strain Enr13T revealed the presence of lipophilic metabolites, of which the major compound was isolated by preparative reversed-phase HPLC. The structure of this compound, named stieleriacine D (1), was elucidated utilizing HRESIMS, 1D- and 2D-NMR data as a new N-acylated dehydrotyrosine derivative. Its biosynthesis was proposed based on an in silico gene cluster analysis. Through analysis of the MS/MS spectrum of 1 and its minor derivative, stieleriacine E (2), it was possible to assign the structure of 2 without isolation. 1 showed antibacterial activity, however, the wide distribution of structurally related compounds indicates a potential role as a signaling molecule.

10.
Antonie Van Leeuwenhoek ; 113(12): 1953-1963, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32797359

ABSTRACT

Species belonging to the bacterial phylum Planctomycetes are ubiquitous members of the microbial communities in aquatic environments and are frequently isolated from various biotic and abiotic surfaces in marine and limnic water bodies. Planctomycetes have large genomes of up to 12.4 Mb, follow complex lifestyles and display an uncommon cell biology; features which motivate the investigation of members of this phylum in greater detail. As a contribution to the current collection of axenic cultures of Planctomycetes, we here describe strain Pla52T isolated from wood particles in the Baltic Sea. Phylogenetic analysis places the strain in the family Pirellulaceae and suggests two species of the recently described genus Stieleria as current closest neighbours. Strain Pla52nT shows typical features of members of the class Planctomycetia, including division by polar budding and the presence of crateriform structures. Colonies of strain Pla52nT have a light orange colour, which is an unusual pigmentation compared to the majority of members in the phylum, which show either a pink to red pigmentation or entirely lack pigmentation. Optimal growth of strain Pla52nT at 33 °C and pH 7.5 indicates a mesophilic (i.e. with optimal growth between 20 and 45 °C) and neutrophilic growth profile. The strain is an aerobic heterotroph with motile daughter cells. Its genome has a size of 9.6 Mb and a G + C content of 56.0%. Polyphasic analyses justify delineation of the strain from described species within the genus Stieleria. Therefore, we conclude that strain Pla52nT = LMG 29463T = VKM B-3447T should be classified as the type strain of a novel species, for which we propose the name Stieleria varia sp. nov.


Subject(s)
Fatty Acids , Wood , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
11.
Front Microbiol ; 11: 1458, 2020.
Article in English | MEDLINE | ID: mdl-32754127

ABSTRACT

Seagrass meadows are ubiquitous, fragile and endangered marine habitats, which serve as fish breeding grounds, stabilize ocean floor substrates, retain nutrients and serve as important carbon sinks, counteracting climate change. In the Mediterranean Sea, seagrass meadows are mostly formed by the slow-growing endemic plant Posidonia oceanica (Neptune grass), which is endangered by global warming and recreational motorboating. Despite its importance, surprisingly little is known about the leaf surface microbiome of P. oceanica. Using amplicon sequencing, we here show that species belonging to the phylum Planctomycetes can dominate the biofilms of young and aged P. oceanica leaves. Application of selective cultivation techniques allowed for the isolation of two novel planctomycetal strains belonging to two yet uncharacterized genera.

12.
Antonie Van Leeuwenhoek ; 113(12): 1965-1977, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32833165

ABSTRACT

Planctomycetes is a phylum of environmentally important bacteria, which also receive significant attention due to their fascinating cell biology. Access to axenic Planctomycete cultures is crucial to study cell biological features within this phylum in further detail. In this study, we characterise three novel strains, Mal52T, Pan258 and CA54T, which were isolated close to the coasts of the islands Mallorca (Spain) and Panarea (Italy), and from Monterey Bay, CA, USA. The three isolates show optimal growth at temperatures between 22 and 24 °C and at pH 7.5, divide by polar budding, lack pigmentation and form strong aggregates in liquid culture. Analysis of five phylogenetic markers suggests that the strains constitute two novel species within a novel genus in the family Planctomycetaceae. The strains Mal52T (DSM 101177T = VKM B-3432T) and Pan258 were assigned to the species Symmachiella dynata gen nov., sp. nov., while strain CA54T (DSM 104301T = VKM B-3450T) forms a separate species of the same genus, for which we propose the name Symmachiella macrocystis sp. nov.


Subject(s)
Macrocystis , Bacteria/genetics , Bacterial Typing Techniques , DNA, Bacterial , Fatty Acids/analysis , Mediterranean Sea , Pacific Ocean , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
13.
Antonie Van Leeuwenhoek ; 113(12): 1939-1952, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32623658

ABSTRACT

Planctomycetes are ubiquitous bacteria with fascinating cell biological features. Strains available as axenic cultures in most cases have been isolated from aquatic environments and serve as a basis to study planctomycetal cell biology and interactions in further detail. As a contribution to the current collection of axenic cultures, here we characterise three closely related strains, Poly24T, CA51T and Mal33, which were isolated from the Baltic Sea, the Pacific Ocean and the Mediterranean Sea, respectively. The strains display cell biological features typical for related Planctomycetes, such as division by polar budding, presence of crateriform structures and formation of rosettes. Optimal growth was observed at temperatures of 30-33 °C and at pH 7.5, which led to maximal growth rates of 0.065-0.079 h-1, corresponding to generation times of 9-11 h. The genomes of the novel isolates have a size of 7.3-7.5 Mb and a G + C content of 57.7-58.2%. Phylogenetic analyses place the strains in the family Pirellulaceae and suggest that Roseimaritima ulvae and Roseimaritima sediminicola are the current closest relatives. Analysis of five different phylogenetic markers, however, supports the delineation of the strains from members of the genus Roseimaritima and other characterised genera in the family. Supported by morphological and physiological differences, we conclude that the strains belong to the novel genus Rosistilla gen. nov. and constitute two novel species, for which we propose the names Rosistilla carotiformis sp. nov. and Rosistilla oblonga sp. nov. (the type species). The two novel species are represented by the type strains Poly24T (= DSM 102938T = VKM B-3434T = LMG 31347T = CECT 9848T) and CA51T (= DSM 104080T = LMG 29702T), respectively.


Subject(s)
Fatty Acids , Bacterial Typing Techniques , DNA, Bacterial/genetics , Germany , Phylogeny , Planctomycetales , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spain
14.
Commun Biol ; 3(1): 303, 2020 06 12.
Article in English | MEDLINE | ID: mdl-32533057

ABSTRACT

Bacterial strains of the phylum Planctomycetes occur ubiquitously, but are often found on surfaces of aquatic phototrophs, e.g. alga. Despite slower growth, planctomycetes are not outcompeted by faster-growing bacteria in biofilms on such surfaces; however, strategies allowing them to compensate for slower growth have not yet been investigated. Here, we identified stieleriacines, a class of N-acylated tyrosines produced by the novel planctomycete Stieleria maiorica Mal15T, and analysed their effects on growth of the producing strain and bacterial species likely co-occurring with strain Mal15T. Stieleriacines reduced the lag phase of Mal15T and either stimulated or inhibited biofilm formation of two bacterial competitors, indicating that Mal15T employs stieleriacines to specifically alter microbial biofilm composition. The genetic organisation of the putative stieleriacine biosynthetic cluster in strain Mal15T points towards a functional link of stieleriacine biosynthesis to exopolysaccharide-associated protein sorting and biofilm formation.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/growth & development , Gram-Positive Bacteria/growth & development , Planctomycetales/classification , Seawater/microbiology , Tyrosine/pharmacology , Acylation , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Gram-Positive Bacteria/drug effects , Planctomycetales/genetics , Planctomycetales/isolation & purification , Planctomycetales/metabolism , Tyrosine/chemistry
15.
Antonie Van Leeuwenhoek ; 113(12): 1927-1937, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32583190

ABSTRACT

Pan44T, a novel strain belonging to the phylum Planctomycetes, was isolated from a red biofilm in a hydrothermal area close to the island Panarea in the Tyrrhenian Sea north of Sicily, Italy. The strain forms white colonies on solid medium and displays the following characteristics: cell division by budding, formation of rosettes, presence of matrix or fimbriae and long stalks. The cell surface has an interesting and characteristic texture made up of triangles and rectangles, which leads to a pine cone-like morphology of the strain. Strain Pan44T is mesophilic (temperature optimum 26 °C), slightly alkaliphilic (pH optimum 8.0), aerobic and heterotrophic. The strain has a genome size of 6.76 Mb with a G + C content of 63.2%. Phylogenetically, the strain is a member of the family Planctomycetaceae, order Planctomycetales, class Planctomycetia. Our analysis supports delineation of strain Pan44T from all known genera in this family, hence, we propose to assign it to a novel species within a novel genus, for which we propose the name Caulifigura coniformis gen. nov., sp. nov., represented by Pan44T (DSM 29405T = LMG 29788T) as the type strain.


Subject(s)
Planctomycetales , Bacterial Typing Techniques , Base Composition , Biofilms , DNA, Bacterial , Fatty Acids/analysis , Phylogeny , Planctomycetales/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
16.
Antonie Van Leeuwenhoek ; 113(12): 1915-1926, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32583191

ABSTRACT

Access to axenic cultures is crucial to extend the knowledge of the biology, lifestyle or metabolic capabilities of bacteria from different phyla. The phylum Planctomycetes is an excellent example since its members display an unusual cell biology and complex lifestyles. As a contribution to the current collection of axenic planctomycete cultures, here we describe strain Mal48T isolated from phytoplankton material sampled at the coast of S'Arenal close to Palma de Mallorca (Spain). The isolated strain shows optimal growth at pH 7.0-7.5 and 30 °C and exhibits typical features of Planctomycetes. Cells of the strain are spherical to pear-shaped, divide by polar budding with daughter cells showing the same shape as the mother cell, tend to aggregate, display a stalk and produce matrix or fimbriae. Strain Mal48T showed 95.8% 16S rRNA gene sequence similarity with the recently described Thalassoglobus neptunius KOR42T. The genome sequence of the novel isolate has a size of 6,357,355 bp with a G+C content of 50.3%. A total of 4874 protein-coding genes, 41 tRNA genes and 2 copies of the 16S rRNA gene are encoded in the genome. Based on phylogenetic, morphological and physiological analyses, we conclude that strain Mal48T (= DSM 100737T = LMG 29019T) should be classified as the type strain of a new species in the genus Thalassoglobus, for which the name Thalassoglobus polymorphus sp. nov. is proposed.


Subject(s)
Fatty Acids , DNA, Bacterial/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spain
17.
Antonie Van Leeuwenhoek ; 113(12): 1901-1913, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32583192

ABSTRACT

Planctomycetes are ubiquitous bacteria with environmental and biotechnological relevance. Axenic cultures of planctomycetal strains are the basis to analyse their unusual biology and largely uncharacterised metabolism in more detail. Here, we describe strain Mal4T isolated from marine sediments close to Palma de Mallorca, Spain. Strain Mal4T displays common planctomycetal features, such as division by polar budding and the presence of fimbriae and crateriform structures on the cell surface. Cell growth was observed at ranges of 10-39 °C (optimum at 31 °C) and pH 6.5-9.0 (optimum at 7.5). The novel strain shows as pear-shaped cells of 2.0 ± 0.2 × 1.4 ± 0.1 µm and is one of the rare examples of orange colony-forming Planctomycetes. Its genome has a size of 7.7 Mb with a G+C content of 63.4%. Phylogenetically, we conclude that strain Mal4T (= DSM 100296T = LMG 29133T) is the type strain representing the type species of a novel genus, for which we propose the name Maioricimonas rarisocia gen. nov., sp. nov.


Subject(s)
Fatty Acids , Geologic Sediments , Bacterial Typing Techniques , DNA, Bacterial/genetics , Fatty Acids/analysis , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spain
18.
Antonie Van Leeuwenhoek ; 113(12): 1889-1900, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32399714

ABSTRACT

A novel planctomycetal strain, designated ElPT, was isolated from an alga in the shallow hydrothermal vent system close to Panarea Island in the Tyrrhenian Sea. Cells of strain ElPT are spherical, form pink colonies and display typical planctomycetal characteristics including division by budding and presence of crateriform structures. Strain ElPT has a mesophilic (optimum at 30 °C) and neutrophilic (optimum at pH 7.5) growth profile, is aerobic and heterotrophic. It reaches a generation time of 29 h (µmax = 0.024 h-1). The strain has a genome size of 9.40 Mb with a G + C content of 71.1% and harbours five plasmids, the highest number observed in the phylum Planctomycetes thus far. Phylogenetically, the strain represents a novel species of the recently described genus Tautonia in the family Isosphaeraceae. A characteristic feature of the strain is its tendency to attach strongly to a range of plastic surfaces. We thus propose the name Tautonia plasticadhaerens sp. nov. for the novel species, represented by the type strain ElPT (DSM 101012T = LMG 29141T).


Subject(s)
Hydrothermal Vents , Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids/analysis , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA
19.
Antonie Van Leeuwenhoek ; 113(12): 1877-1887, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32399715

ABSTRACT

A novel strain belonging to the family Planctomycetaceae, designated V22T, was isolated from sediment of a seawater fish tank in Braunschweig, Germany. The isolate forms pink colonies on solid medium and displays common characteristics of planctomycetal strains, such as division by budding, formation of rosettes, a condensed nucleoid and presence of crateriform structures and fimbriae. Unusual invaginations of the cytoplasmic membrane and filamentous putative cytoskeletal elements were observed in thin sections analysed by transmission electron microscopy. Strain V22T is an aerobic heterotroph showing optimal growth at 30 °C and pH 8.5. During laboratory cultivations, strain V22T reached generation times of 10 h (maximal growth rate of 0.069 h-1). Its genome has a size of 5.2 Mb and a G + C content of 54.9%. Phylogenetically, the strain represents a novel genus and species in the family Planctomycetaceae, order Planctomycetales, class Planctomycetia. We propose the name Calycomorphotria hydatis gen. nov., sp. nov. for the novel taxon, represented by the type strain V22T (DSM 29767T = LMG 29080T).


Subject(s)
Planctomycetales , Animals , Bacterial Typing Techniques , DNA, Bacterial/genetics , Fatty Acids/analysis , Phylogeny , Planctomycetales/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
20.
Antonie Van Leeuwenhoek ; 113(12): 1863-1875, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32239303

ABSTRACT

A novel planctomycetal strain, designated Pla85_3_4T, was isolated from the surface of wood incubated at the discharge of a wastewater treatment plant in the Warnow river near Rostock, Germany. Cells of the novel strain have a cell envelope architecture resembling that of Gram-negative bacteria, are round to pear-shaped (length: 2.2 ± 0.4 µm, width: 1.2 ± 0.3 µm), form aggregates and divide by polar budding. Colonies have a cream colour. Strain Pla85_3_4T grows at ranges of 10-30 °C (optimum 26 °C) and at pH 6.5-10.0 (optimum 7.5), and has a doubling time of 26 h. Phylogenetically, strain Pla85_3_4T (DSM 103796T = LMG 29741T) is concluded to represent a novel species of a novel genus within the family Pirellulaceae, for which we propose the name Lignipirellula cremea gen. nov., sp. nov.


Subject(s)
Estuaries , Rivers , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/analysis , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Wood/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...