Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Cancers (Basel) ; 16(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38672556

ABSTRACT

Medulloblastoma and pilocytic astrocytoma are the two most common pediatric brain tumors with overlapping imaging features. In this proof-of-concept study, we investigated using a deep learning classifier trained on a multicenter data set to differentiate these tumor types. We developed a patch-based 3D-DenseNet classifier, utilizing automated tumor segmentation. Given the heterogeneity of imaging data (and available sequences), we used all individually available preoperative imaging sequences to make the model robust to varying input. We compared the classifier to diagnostic assessments by five readers with varying experience in pediatric brain tumors. Overall, we included 195 preoperative MRIs from children with medulloblastoma (n = 69) or pilocytic astrocytoma (n = 126) across six university hospitals. In the 64-patient test set, the DenseNet classifier achieved a high AUC of 0.986, correctly predicting 62/64 (97%) diagnoses. It misclassified one case of each tumor type. Human reader accuracy ranged from 100% (expert neuroradiologist) to 80% (resident). The classifier performed significantly better than relatively inexperienced readers (p < 0.05) and was on par with pediatric neuro-oncology experts. Our proof-of-concept study demonstrates a deep learning model based on automated tumor segmentation that can reliably preoperatively differentiate between medulloblastoma and pilocytic astrocytoma, even in heterogeneous data.

3.
Genome Med ; 15(1): 67, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37679810

ABSTRACT

BACKGROUND: Cancer immunotherapies including immune checkpoint inhibitors and Chimeric Antigen Receptor (CAR) T-cell therapy have shown variable response rates in paediatric patients highlighting the need to establish robust biomarkers for patient selection. While the tumour microenvironment in adults has been widely studied to delineate determinants of immune response, the immune composition of paediatric solid tumours remains relatively uncharacterized calling for investigations to identify potential immune biomarkers. METHODS: To inform immunotherapy approaches in paediatric cancers with embryonal origin, we performed an immunogenomic analysis of RNA-seq data from 925 treatment-naïve paediatric nervous system tumours (pedNST) spanning 12 cancer types from three publicly available data sets. RESULTS: Within pedNST, we uncovered four broad immune clusters: Paediatric Inflamed (10%), Myeloid Predominant (30%), Immune Neutral (43%) and Immune Desert (17%). We validated these clusters using immunohistochemistry, methylation immune inference and segmentation analysis of tissue images. We report shared biology of these immune clusters within and across cancer types, and characterization of specific immune cell frequencies as well as T- and B-cell repertoires. We found no associations between immune infiltration levels and tumour mutational burden, although molecular cancer entities were enriched within specific immune clusters. CONCLUSIONS: Given the heterogeneity of immune infiltration within pedNST, our findings suggest personalized immunogenomic profiling is needed to guide selection of immunotherapeutic strategies.


Subject(s)
Nervous System Neoplasms , Adult , Humans , Child , B-Lymphocytes , Immune Checkpoint Inhibitors , Immunotherapy , Tumor Microenvironment/genetics
4.
Hum Reprod ; 38(10): 2028-2038, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37553222

ABSTRACT

STUDY QUESTION: In children affected by rhabdoid tumors (RT), are there clinical, therapeutic, and/or (epi-)genetic differences between those conceived following ART compared to those conceived without ART? SUMMARY ANSWER: We detected a significantly elevated female predominance, and a lower median age at diagnosis, of children with RT conceived following ART (RT_ART) as compared to other children with RT. WHAT IS KNOWN ALREADY: Anecdotal evidence suggests an association of ART with RT. STUDY DESIGN, SIZE, DURATION: This was a multi-institutional retrospective survey. Children with RT conceived by ART were identified in our EU-RHAB database (n = 11/311 children diagnosed between January 2010 and January 2018) and outside the EU-RHAB database (n = 3) from nine different countries. A population-representative German EU-RHAB control cohort of children with RTs conceived without ART (n = 211) (EU-RHAB control cohort) during the same time period was used as a control cohort for clinical, therapeutic, and survival analyses. The median follow-up time was 11.5 months (range 0-120 months) for children with RT_ART and 18.5 months (range 0-153 months) for the EU-RHAB control cohort. PARTICIPANTS/MATERIALS, SETTING, METHODS: We analyzed 14 children with RT_ART diagnosed from January 2010 to January 2018. We examined tumors and matching blood samples for SMARCB1 mutations and copy number alterations using FISH, multiplex ligation-dependent probe amplification, and DNA sequencing. DNA methylation profiling of tumor and/or blood samples was performed using DNA methylation arrays and compared to respective control cohorts of similar age (n = 53 tumors of children with RT conceived without ART, and n = 38 blood samples of children with no tumor born small for gestational age). MAIN RESULTS AND THE ROLE OF CHANCE: The median age at diagnosis of 14 individuals with RT_ART was 9 months (range 0-66 months), significantly lower than the median age of patients with RT (n = 211) in the EU-RHAB control cohort (16 months (range 0-253), P = 0.03). A significant female predominance was observed in the RT_ART cohort (M:F ratio: 2:12 versus 116:95 in EU-RHAB control cohort, P = 0.004). Eight of 14 RT_ART patients were diagnosed with atypical teratoid rhabdoid tumor, three with extracranial, extrarenal malignant rhabdoid tumor, one with rhabdoid tumor of the kidney and two with synchronous tumors. The location of primary tumors did not differ significantly in the EU-RHAB control cohort (P = 0.27). Six of 14 RT_ART patients presented with metastases at diagnosis. Metastatic stage was not significantly different from that within the EU-RHAB control cohort (6/14 vs 88/211, P = 1). The incidence of pathogenic germline variants was five of the 12 tested RT_ART patients and, thus, not significantly different from the EU-RHAB control cohort (5/12 versus 36/183 tested, P = 0.35). The 5-year overall survival (OS) and event free survival (EFS) rates of RT_ART patients were 42.9 ± 13.2% and 21.4 ± 11%, respectively, and thus comparable to the EU-RHAB control cohort (OS 41.1 ± 3.5% and EFS 32.1 ± 3.3). We did not find other clinical, therapeutic, outcome factors distinguishing patients with RT_ART from children with RTs conceived without ART (EU-RHAB control cohort). DNA methylation analyses of 10 tumors (atypical teratoid RT = 6, extracranial, extrarenal malignant RT = 4) and six blood samples from RT_ART patients showed neither evidence of a general DNA methylation difference nor underlying imprinting defects, respectively, when compared to a control group (n = 53 RT samples of patients without ART, P = 0.51, n = 38 blood samples of patients born small for gestational age, P = 0.1205). LIMITATIONS, REASONS FOR CAUTION: RTs are very rare malignancies and our results are based on a small number of children with RT_ART. WIDER IMPLICATIONS OF THE FINDINGS: This cohort of patients with RT_ART demonstrated a marked female predominance, and a rather low median age at diagnosis even for RTs. Other clinical, treatment, outcome, and molecular factors did not differ from those conceived without ART (EU-RHAB control cohort) or reported in other series, and there was no evidence for imprinting defects. Long-term survival is achievable even in cases with pathogenic germline variants, metastatic disease at diagnosis, or relapse. The female preponderance among RT_ART patients is not yet understood and needs to be evaluated, ideally in larger international series. STUDY FUNDING/COMPETING INTEREST(S): M.C.F. is supported by the 'Deutsche Kinderkrebsstiftung' DKS 2020.10, by the 'Deutsche Forschungsgemeinschaft' DFG FR 1516/4-1 and by the Deutsche Krebshilfe 70113981. R.S. received grant support by Deutsche Krebshilfe 70114040 and for infrastructure by the KinderKrebsInitiative Buchholz/Holm-Seppensen. P.D.J. is supported by the Else-Kroener-Fresenius Stiftung and receives a Max-Eder scholarship from the Deutsche Krebshilfe. M.H. is supported by DFG (HA 3060/8-1) and IZKF Münster (Ha3/017/20). BB is supported by the 'Deutsche Kinderkrebsstiftung' DKS 2020.05. We declare no competing interests. TRIAL REGISTRATION NUMBER: N/A.

5.
Acta Neuropathol ; 146(3): 527-541, 2023 09.
Article in English | MEDLINE | ID: mdl-37450044

ABSTRACT

Atypical teratoid/rhabdoid tumors (AT/RT) are the most common malignant brain tumors manifesting in infancy. They split into four molecular types. The major three (AT/RT-SHH, AT/RT-TYR, and AT/RT-MYC) all carry mutations in SMARCB1, the fourth quantitatively smaller type is characterized by SMARCA4 mutations (AT/RT-SMARCA4). Molecular characteristics of disease recurrence or metastatic spread, which go along with a particularly dismal outcome, are currently unclear. Here, we investigated tumor tissue from 26 patients affected by AT/RT to identify signatures of recurrences in comparison with matched primary tumor samples. Microscopically, AT/RT recurrences demonstrated a loss of architecture and significantly enhanced mitotic activity as compared to their related primary tumors. Based on DNA methylation profiling, primary tumor and related recurrence were grossly similar, but three out of 26 tumors belonged to a different molecular type or subtype after second surgery compared to related primary lesions. Copy number variations (CNVs) differed in six cases, showing novel gains on chromosome 1q or losses of chromosome 10 in recurrences as the most frequent alterations. To consolidate these observations, our cohort was combined with a data set of unmatched primary and recurrent AT/RT, which demonstrated chromosome 1q gain and 10 loss in 18% (n = 7) and 11% (n = 4) of the recurrences (n = 38) as compared to 7% (n = 3) and 0% (n = 0) in the primary tumors (n = 44), respectively. Similar to the observations made by DNA methylation profiling, RNA sequencing of our cohort revealed AT/RT primary tumors and matched recurrences clustering closely together. However, a number of genes showed significantly altered expression in AT/RT-SHH recurrences. Many of them are known tumor driving growth factors, involved in embryonal development and tumorigenesis, or are cell-cycle-associated. Overall, our work identifies subtle molecular changes that occur in the course of the disease and that may help define novel therapeutic targets for AT/RT recurrences.


Subject(s)
DNA Copy Number Variations , Disease Progression , Epigenesis, Genetic , Gene Expression Profiling , Recurrence , Rhabdoid Tumor , Teratoma , Child , Child, Preschool , Female , Humans , Infant , Male , Chromosomes, Human, Pair 1/genetics , Chromosomes, Human, Pair 10/genetics , Cohort Studies , Dendritic Cells , DNA Copy Number Variations/genetics , DNA Methylation , Histology , Mitosis , Rhabdoid Tumor/classification , Rhabdoid Tumor/genetics , Rhabdoid Tumor/immunology , Rhabdoid Tumor/pathology , Sequence Analysis, RNA , Teratoma/classification , Teratoma/genetics , Teratoma/immunology , Teratoma/pathology , Transcription Factors/genetics , Gene Expression Regulation, Neoplastic/genetics
6.
Curr Issues Mol Biol ; 45(3): 2121-2135, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36975506

ABSTRACT

Mesenchymal stromal cells (MSC) are part of the bone marrow architecture and contribute to the homeostasis of hematopoietic stem cells. Moreover, they are known to regulate immune effector cells. These properties of MSC are pivotal under physiologic conditions, and they may aberrantly also protect malignant cells. MSCs are also found in the leukemic stem cell niche of the bone marrow and as part of the tumor microenvironment. Here, they protect malignant cells from chemotherapeutic drugs and from immune effector cells in immunotherapeutic approaches. Modulation of these mechanisms may improve the efficacy of therapeutic regimens. We investigated the effect of the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA, Vorinostat™) on the immunomodulatory effect and cytokine profile of MSC derived from bone marrow and pediatric tumors. The immune phenotype of MSC was not markedly affected. SAHA-treated MSC showed reduced immunomodulatory effects on T cell proliferation and NK cell cytotoxicity. This effect was accompanied by an altered cytokine profile of MSC. While untreated MSC inhibited the production of certain pro-inflammatory cytokines, SAHA treatment led to a partial increase in IFNγ and TNFα secretion. These alterations of the immunosuppressive milieu might be beneficial for immunotherapeutic approaches.

7.
Cancers (Basel) ; 14(20)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36291828

ABSTRACT

Renal medullary carcinomas (RMC) are rare aggressive tumors of the kidneys, characterized by a loss of SMARCB1. Characteristically, these tumors arise in patients with sickle cell trait or other hemoglobinopathies. Recent characterization efforts have unraveled oncogenic pathways that drive tumorigenesis. Among these, gene sets that characterize replicative stress and the innate immune response are upregulated in RMCs. Despite comprehensive genetic and transcriptomic characterizations, commonalities or differences to other SMARCB1 deficient entities so far have not been investigated. We analyzed the methylome of seven primary RMC and compared it to other SMARCB1 deficient entities such as rhabdoid tumors (RT) and epithelioid sarcomas using 850 K methylation arrays. Moreover, we evaluated the differential gene expression of RMC using RNA-sequencing in comparison to other rhabdoid tumors. In accordance with previous gene expression data, we found that RMCs separate from other SMARCB1 deficient entities, pointing to a potentially different cell of origin and a role of additional genetic aberrations that may drive tumorigenesis and thus alter the methylome when compared to rhabdoid tumors. In a focused analysis of genes that are important for nephrogenesis, we particularly detected genes that govern early nephrogenesis such as FOXI1 to be hypomethylated and expressed at high levels in RMC. Overall, our analyses underscore the fact that RMCs represent a separate entity with limited similarities to rhabdoid tumors, warranting specific treatment tailored to the aggressiveness of the disease.

8.
Mod Pathol ; 35(12): 1757-1758, 2022 12.
Article in English | MEDLINE | ID: mdl-36127393
9.
Cell Death Dis ; 13(9): 806, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36127323

ABSTRACT

Atypical teratoid/rhabdoid tumor (AT/RT) is a highly malignant brain tumor in infants that is characterized by loss of nuclear expression of SMARCB1 or SMARCA4 proteins. Recent studies show that AT/RTs comprise three molecular subgroups, namely AT/RT-TYR, AT/RT-MYC and AT/RT-SHH. The subgroups show distinct expression patterns of genes involved in ciliogenesis, however, little is known about the functional roles of primary cilia in the biology of AT/RT. Here, we show that primary cilia are present across all AT/RT subgroups with specific enrichment in AT/RT-TYR patient samples. Furthermore, we demonstrate that primary ciliogenesis contributes to AT/RT biology in vitro and in vivo. Specifically, we observed a significant decrease in proliferation and clonogenicity following disruption of primary ciliogenesis in AT/RT cell line models. Additionally, apoptosis was significantly increased via the induction of STAT1 and DR5 signaling, as detected by proteogenomic profiling. In a Drosophila model of SMARCB1 deficiency, concomitant knockdown of several cilia-associated genes resulted in a substantial shift of the lethal phenotype with more than 20% of flies reaching adulthood. We also found significantly extended survival in an orthotopic xenograft mouse model of AT/RT upon disruption of primary ciliogenesis. Taken together, our findings indicate that primary ciliogenesis or its downstream signaling contributes to the aggressiveness of AT/RT and, therefore, may constitute a novel therapeutic target.


Subject(s)
Brain Neoplasms , Rhabdoid Tumor , Teratoma , Animals , Brain Neoplasms/genetics , Cilia/metabolism , DNA Helicases/metabolism , Humans , Mice , Nuclear Proteins/metabolism , Rhabdoid Tumor/genetics , Rhabdoid Tumor/metabolism , Rhabdoid Tumor/pathology , Signal Transduction , Teratoma/genetics , Teratoma/pathology , Transcription Factors/genetics , Transcription Factors/therapeutic use
10.
Cancers (Basel) ; 14(9)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35565313

ABSTRACT

Introduction: Malignant rhabdoid tumors (MRT) predominantly affect infants and young children. Patients below six months of age represent a particularly therapeutically challenging group. Toxicity to developing organ sites limits intensity of treatment. Information on prognostic factors, genetics, toxicity of treatment and long-term outcomes is sparse. Methods: Clinical, genetic, and treatment data of 100 patients (aged below 6 months at diagnosis) from 13 European countries were analyzed (2005-2020). Tumors and matching blood samples were examined for SMARCB1 mutations using FISH, MLPA and Sanger sequencing. DNA methylation subgroups (ATRT-TYR, ATRT-SHH, and ATRT-MYC) were determined using 450 k / 850 k-profiling. Results: A total of 45 patients presented with ATRT, 29 with extracranial, extrarenal (eMRT) and 9 with renal rhabdoid tumors (RTK). Seventeen patients demonstrated synchronous tumors (SYN). Metastases (M+) were present in 27% (26/97) at diagnosis. A germline mutation (GLM) was detected in 55% (47/86). DNA methylation subgrouping was available in 50% (31 / 62) with ATRT or SYN; for eMRT, methylation-based subgrouping was not performed. The 5-year overall (OS) and event free survival (EFS) rates were 23.5 ± 4.6% and 19 ± 4.1%, respectively. Male sex (11 ± 5% vs. 35.8 ± 7.4%), M+ stage (6.1 ± 5.4% vs. 36.2 ± 7.4%), presence of SYN (7.1 ± 6.9% vs. 26.6 ± 5.3%) and GLM (7.7 ± 4.2% vs. 45.7 ± 8.6%) were significant prognostic factors for 5-year OS. Molecular subgrouping and survival analyses confirm a previously described survival advantage for ATRT-TYR. In an adjusted multivariate model, clinical factors that favorably influence the prognosis were female sex, localized stage, absence of a GLM and maintenance therapy. Conclusions: In this cohort of homogenously treated infants with MRT, significant predictors of outcome were sex, M-stage, GLM and maintenance therapy. We confirm the need to stratify which patient groups benefit from multimodal treatment, and which need novel therapeutic strategies. Biomarker-driven tailored trials may be a key option.

11.
Acta Neuropathol ; 143(6): 697-711, 2022 06.
Article in English | MEDLINE | ID: mdl-35501487

ABSTRACT

Atypical teratoid/rhabdoid tumor (ATRT) is an aggressive central nervous system tumor characterized by loss of SMARCB1/INI1 protein expression and comprises three distinct molecular groups, ATRT-TYR, ATRT-MYC and ATRT-SHH. ATRT-SHH represents the largest molecular group and is heterogeneous with regard to age, tumor location and epigenetic profile. We, therefore, aimed to investigate if heterogeneity within ATRT-SHH might also have biological and clinical importance. Consensus clustering of DNA methylation profiles and confirmatory t-SNE analysis of 65 ATRT-SHH yielded three robust molecular subgroups, i.e., SHH-1A, SHH-1B and SHH-2. These subgroups differed by median age of onset (SHH-1A: 18 months, SHH-1B: 107 months, SHH-2: 13 months) and tumor location (SHH-1A: 88% supratentorial; SHH-1B: 85% supratentorial; SHH-2: 93% infratentorial, often extending to the pineal region). Subgroups showed comparable SMARCB1 mutational profiles, but pathogenic/likely pathogenic SMARCB1 germline variants were over-represented in SHH-2 (63%) as compared to SHH-1A (20%) and SHH-1B (0%). Protein expression of proneural marker ASCL1 (enriched in SHH-1B) and glial markers OLIG2 and GFAP (absent in SHH-2) as well as global mRNA expression patterns differed, but all subgroups were characterized by overexpression of SHH as well as Notch pathway members. In a Drosophila model, knockdown of Snr1 (the fly homologue of SMARCB1) in hedgehog activated cells not only altered hedgehog signaling, but also caused aberrant Notch signaling and formation of tumor-like structures. Finally, on survival analysis, molecular subgroup and age of onset (but not ASCL1 staining status) were independently associated with overall survival, older patients (> 3 years) harboring SHH-1B experiencing relatively favorable outcome. In conclusion, ATRT-SHH comprises three subgroups characterized by SHH and Notch pathway activation, but divergent molecular and clinical features. Our data suggest that molecular subgrouping of ATRT-SHH has prognostic relevance and might aid to stratify patients within future clinical trials.


Subject(s)
Central Nervous System Neoplasms , Neoplasms, Neuroepithelial , Rhabdoid Tumor , Teratoma , Central Nervous System Neoplasms/genetics , DNA Methylation , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Humans , Neoplasms, Neuroepithelial/genetics , Prognosis , Rhabdoid Tumor/genetics , SMARCB1 Protein/genetics , SMARCB1 Protein/metabolism , Teratoma/genetics
12.
Am J Surg Pathol ; 46(9): 1277-1283, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35446794

ABSTRACT

Atypical teratoid/rhabdoid tumor (AT/RT) is a malignant central nervous system tumor predominantly affecting infants. Mutations of SMARCB1 or (rarely) SMARCA4 causing loss of nuclear SMARCB1 or SMARCA4 protein expression are characteristic features, but further recurrent genetic alterations are lacking. Most AT/RTs occur de novo, but secondary AT/RTs arising from other central nervous system tumors have been reported. Malignant gliomas, IDH wild-type, arising in patients with Li-Fraumeni syndrome typically show somatic mutations of TP53 as well as complex copy number alterations, but little is known about the loss of SMARCB1 or SMARCA4 protein expression in this context. Here, we report 2 children in whom malignant supratentorial brain tumors with SMARCB1 deficiency, complex copy number alterations, and somatic TP53 mutations lead to the discovery of pathogenic/likely pathogenic TP53 variants in the germline. Screening of the molecularneuropathology.org dataset for cases with similar genetic and epigenetic alterations yielded another case with SMARCA4 deficiency in a young adult with Li-Fraumeni syndrome. In conclusion, SMARCB1-deficient or SMARCA4-deficient malignant brain tumors with complex copy number alterations and somatic TP53 mutations in children and young adults may represent the first clinical manifestation of Li-Fraumeni syndrome and should prompt genetic counseling and investigation for TP53 germline status.


Subject(s)
Brain Neoplasms , Li-Fraumeni Syndrome , Rhabdoid Tumor , Brain Neoplasms/complications , Brain Neoplasms/genetics , Child , DNA Copy Number Variations , DNA Helicases/genetics , DNA Helicases/metabolism , Humans , Li-Fraumeni Syndrome/complications , Li-Fraumeni Syndrome/genetics , Mutation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Rhabdoid Tumor/genetics , Rhabdoid Tumor/pathology , SMARCB1 Protein/genetics , SMARCB1 Protein/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Suppressor Protein p53/genetics
13.
Nat Commun ; 13(1): 1544, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35318328

ABSTRACT

Rhabdoid tumors (RT) are rare and highly aggressive pediatric neoplasms. Their epigenetically-driven intertumoral heterogeneity is well described; however, the cellular origin of RT remains an enigma. Here, we establish and characterize different genetically engineered mouse models driven under the control of distinct promoters and being active in early progenitor cell types with diverse embryonic onsets. From all models only Sox2-positive progenitor cells give rise to murine RT. Using single-cell analyses, we identify distinct cells of origin for the SHH and MYC subgroups of RT, rooting in early stages of embryogenesis. Intra- and extracranial MYC tumors harbor common genetic programs and potentially originate from fetal primordial germ cells (PGCs). Using PGC specific Smarcb1 knockout mouse models we validate that MYC RT originate from these progenitor cells. We uncover an epigenetic imbalance in MYC tumors compared to PGCs being sustained by epigenetically-driven subpopulations. Importantly, treatments with the DNA demethylating agent decitabine successfully impair tumor growth in vitro and in vivo. In summary, our work sheds light on the origin of RT and supports the clinical relevance of DNA methyltransferase inhibitors against this disease.


Subject(s)
Rhabdoid Tumor , Animals , Germ Cells/pathology , Humans , Mice , Rhabdoid Tumor/genetics , Rhabdoid Tumor/pathology , SMARCB1 Protein/genetics , Single-Cell Analysis , Transcriptome
14.
Cancer Manag Res ; 14: 479-498, 2022.
Article in English | MEDLINE | ID: mdl-35173482

ABSTRACT

Extracranial malignant rhabdoid tumors (extracranial MRT) are rare, highly aggressive malignancies affecting mainly infants and children younger than 3 years. Common anatomic sites comprise the kidneys (RTK - rhabdoid tumor of kidney) and other soft tissues (eMRT - extracranial, extrarenal malignant rhabdoid tumor). The genetic origin of these diseases is linked to biallelic pathogenic variants in the genes SMARCB1, or rarely SMARCA4, encoding subunits of the SWI/SNF chromatin-remodeling complex. Even if extracranial MRT seem to be quite homogeneous, recent epigenome analyses reveal a certain degree of epigenetic heterogeneity. Use of intensified therapies has modestly improved survival for extracranial MRT. Patients at standard risk profit from conventional therapies; most high-risk patients still experience a dismal course and often therapy resistance. Discoveries of clinical and molecular hallmarks and the exploration of experimental therapeutic approaches open exciting perspectives for clinical and molecularly stratified experimental treatment approaches. To ultimately improve the outcome of patients with extracranial MRTs, they need to be characterized and stratified clinically and molecularly. High-risk patients need novel therapeutic approaches including selective experimental agents in phase I/II clinical trials.

16.
Neuro Oncol ; 24(3): 467-479, 2022 03 12.
Article in English | MEDLINE | ID: mdl-34605902

ABSTRACT

BACKGROUND: More than 40% of patients with intracranial ependymoma need a salvage treatment within 5 years after diagnosis, and no standard treatment is available as yet. We report the outcome after first relapse of 64 patients treated within the 2nd AIEOP protocol. METHODS: We considered relapse sites and treatments, that is, various combinations of complete/incomplete surgery, if followed by standard or hypofractionated radiotherapy (RT) ± chemotherapy (CT). Molecular analyses were available for 38/64 samples obtained at first diagnosis. Of the 64 cases, 55 were suitable for subsequent analyses. RESULTS: The median follow-up was 147 months after diagnosis, 84 months after first relapse, 5-year EFS/OS were 26.2%/30.8% (median EFS/OS 13/32 months) after relapse. For patients with a local relapse (LR), the 5-year cumulative incidence of second LRs was 51.6%, with a 5-year event-specific probability of being LR-free of 40.0%. Tumor site/grade, need for shunting, age above/below 3 years, molecular subgroup at diagnosis, had no influence on outcomes. Due to variation in the RT dose/fractionation used and the subgroup sizes, it was not possible to assess the impact of the different RT modalities. Multivariable analyses identified completion of surgery, the absence of symptoms at relapse, and female sex as prognostically favorable. Tumors with a 1q gain carried a higher cumulative incidence of dissemination after first relapse. CONCLUSIONS: Survival after recurrence was significantly influenced by symptoms and completeness of surgery. Only a homogeneous protocol with well-posed, randomized questions could clarify the numerous issues, orient salvage treatment, and ameliorate prognosis for this group of patients.


Subject(s)
Brain Neoplasms , Ependymoma , Brain Neoplasms/pathology , Child, Preschool , Ependymoma/pathology , Female , Humans , Neoplasm Recurrence, Local/therapy , Prognosis , Treatment Outcome
18.
J Pediatr Hematol Oncol ; 44(7): e968-e975, 2022 10 01.
Article in English | MEDLINE | ID: mdl-34699462

ABSTRACT

INTRODUCTION: Granulocyte transfusions have long been used to bridge the time to neutrophil recovery in patients with neutropenia and severe infection. Recent randomized controlled trials did not prove a beneficial effect of granulocyte transfusions, but were likely underpowered and suffered from very heterogeneous study populations. METHODS: We retrospectively reviewed data of all patients treated with granulocyte transfusions at our pediatric center from 2004 to 2019. To identify parameters that predict the success of granulocyte transfusions, we stratified patients in 3 groups. Patients in group 1 cleared their infection, whereas patients in group 2 succumbed to an infection in neutropenia despite granulocyte transfusions. A third group included all patients who died of causes that were not related to infection. RESULTS: We demonstrate that patients without respiratory or cardiocirculatory insufficiency are enriched in group 1 and more likely to benefit from granulocyte transfusions than patients who already require these intensive care measures. The effect of granulocyte transfusions correlates with the cell dose per body weight applied per time. With our standard twice weekly dosing, patients with a body weight below 40 kg are more likely to achieve a sufficient leukocyte increment and clear their infection in comparison to patients with a higher body weight. DISCUSSION/CONCLUSIONS: We suggest that future studies on the benefits of granulocyte transfusions stratify patients according to clinical risk factors that include the need for respiratory or cardiocirculatory support and strive for a sufficient dose density of granulocyte transfusions.


Subject(s)
Hematology , Neutropenia , Body Weight , Child , Granulocytes , Humans , Neutropenia/etiology , Retrospective Studies
19.
Cancers (Basel) ; 15(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36612221

ABSTRACT

Background: Adrenocortical tumors (ACTs) encompassing the adrenocortical adenoma (ACA), carcinoma (ACC), and tumors of undetermined malignant potential (ACx) are rare endocrine neoplasms with a poor prognosis. We report on pediatric ACT patients registered with the Malignant Endocrine Tumor studies and explore the EXPeRT recommendations for management. Patients: Data from the ACT patients (<18 years) were analyzed. For the risk prediction, the patients were retrospectively assigned to the COG stages and the five-item score. Results: By December 2021, 161 patients with ACT (ACA n = 51, ACx n = 19, and ACC n = 91) had been reported (the median age at the diagnosis was 4.3 years with a range of 0.1−17.8), with lymph node and distant metastases in 10.7% and 18.9% of the patients with ACC/ACx. The mean follow-up was 4.5 years (with a range of 0−16.7). The three-year overall (OS) and event-free survival (EFS) rates were 65.5% and 50.6%. In the univariate analyses, the OS was impaired for patients aged ≥ 4 years (p = 0.001) with the initial biopsy (p = 0.016), tumor spillage (p = 0.028), incomplete tumor resection (p < 0.001), unfavorable histology (p = 0.047), and COG stages III/IV (p = 0.002). Multivariate analysis revealed COG stages III/IV and an unfavorable five-item score as independent negative prognostic factors for the EFS and OS. Conclusions: Age defines the clinical presentation and prognosis in pediatric ACTs. The outcome is best predicted by the COG stage and five-item score.

20.
NPJ Precis Oncol ; 5(1): 103, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34931022

ABSTRACT

Poorly differentiated chordoma (PDC) is a recently recognized subtype of chordoma characterized by expression of the embryonic transcription factor, brachyury, and loss of INI1. PDC primarily affects children and is associated with a poor prognosis and limited treatment options. Here we describe the molecular and immune tumour microenvironment profiles of two paediatric PDCs produced using whole-genome, transcriptome and whole-genome bisulfite sequencing (WGBS) and multiplex immunohistochemistry. Our analyses revealed the presence of tumour-associated immune cells, including CD8+ T cells, and expression of the immune checkpoint protein, PD-L1, in both patient samples. Molecular profiling provided the rationale for immune checkpoint inhibitor (ICI) therapy, which resulted in a clinical and radiographic response. A dominant T cell receptor (TCR) clone specific for a brachyury peptide-MHC complex was identified from bulk RNA sequencing, suggesting that targeting of the brachyury tumour antigen by tumour-associated T cells may underlie this clinical response to ICI. Correlative analysis with rhabdoid tumours, another INI1-deficient paediatric malignancy, suggests that a subset of tumours may share common immune phenotypes, indicating the potential for a therapeutically targetable subgroup of challenging paediatric cancers.

SELECTION OF CITATIONS
SEARCH DETAIL
...