Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 178
Filter
1.
Chembiochem ; 25(9): e202400211, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38530090

ABSTRACT

This symposium is the 5th PSL (Paris Sciences & Lettres) Chemical Biology meeting (2015, 2016, 2019, 2023, 2024) held at Institut Curie. This initiative originally started at Institut de Chimie des Substances Naturelles (ICSN) in Gif-sur-Yvette, with a strong focus on chemistry. It was then continued at the Institut Curie (2015) covering a larger scope, before becoming the official PSL Chemical Biology meeting. This latest edition hosted around 150 participants and was focused on the burgeoning field of ferroptosis, its mechanism and implications in health and disease. While not initially planned, it was felt that the next large Ferroptosis venue (CSHA, China) would not happen before late 2024. A discussion involving Conrad, Birsoy, Ubellacker, Brabletz and Rodriguez next to lake Como in Italy sponsored by the DKFZ, prompted us to fill in this gap and to organize a Ferroptosis meeting in Paris beforehand.


Subject(s)
Ferroptosis , Ferroptosis/drug effects , Humans , Animals
2.
Article in English | MEDLINE | ID: mdl-37735065

ABSTRACT

Most cell surface proteins are decorated by glycans, and the plasma membrane is rich in glycosylated lipids. The mechanisms by which the enormous complexity of these glycan structures on proteins and lipids is exploited to control glycoprotein activity by setting their cell surface residence time and the ways by which they are taken up into cells are still under active investigation. Here, two mechanisms are presented, termed galectin lattices and glycolipid-lectin (GL-Lect)-driven endocytosis, which are among the most prominent to establish a link between glycan information and endocytosis. Types of glycans on glycoproteins and glycolipids are reviewed from the angle of their interaction with glycan-binding proteins that are at the heart of galectin lattices and GL-Lect-driven endocytosis. Examples are given to show how these mechanisms affect cellular functions ranging from cell migration and signaling to vascularization and immune modulation. Finally, outstanding challenges on the link between glycosylation and endocytosis are discussed.


Subject(s)
Endocytosis , Polysaccharides , Polysaccharides/chemistry , Endocytosis/physiology , Cell Membrane/metabolism , Galectins/chemistry , Galectins/metabolism , Lipids
3.
J Biol Chem ; 299(12): 105416, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37918808

ABSTRACT

Proteostasis requires oxidative metabolism (ATP) and mitigation of the associated damage by glutathione, in an increasingly dysfunctional relationship with aging. SLC3A2 (4F2hc, CD98) plays a role as a disulfide-linked adaptor to the SLC7A5 and SLC7A11 exchangers which import essential amino acids and cystine while exporting Gln and Glu, respectively. The positions of N-glycosylation sites on SLC3A2 have evolved with the emergence of primates, presumably in synchrony with metabolism. Herein, we report that each of the four sites in SLC3A2 has distinct profiles of Golgi-modified N-glycans. N-glycans at the primate-derived site N381 stabilized SLC3A2 in the galectin-3 lattice against coated-pit endocytosis, while N365, the site nearest the membrane promoted glycolipid-galectin-3 (GL-Lect)-driven endocytosis. Our results indicate that surface retention and endocytosis are precisely balanced by the number, position, and remodeling of N-glycans on SLC3A2. Furthermore, proteomics and functional assays revealed an N-glycan-dependent clustering of the SLC3A2∗SLC7A5 heterodimer with amino-acid/Na+ symporters (SLC1A4, SLC1A5) that balances branched-chain amino acids and Gln levels, at the expense of ATP to maintain the Na+/K+ gradient. In replete conditions, SLC3A2 interactions require Golgi-modified N-glycans at N365D and N381D, whereas reducing N-glycosylation in the endoplasmic reticulum by fluvastatin treatment promoted the recruitment of CD44 and transporters needed to mitigate stress. Thus, SLC3A2 N-glycosylation and Golgi remodeling of the N-glycans have distinct roles in amino acids import for growth, maintenance, and metabolic stresses.


Subject(s)
Fusion Regulatory Protein 1, Heavy Chain , Large Neutral Amino Acid-Transporter 1 , Stress, Physiological , Humans , Adenosine Triphosphate/metabolism , Amino Acids/metabolism , Fusion Regulatory Protein 1, Heavy Chain/metabolism , Galectin 3/metabolism , Glycosylation , HeLa Cells , Large Neutral Amino Acid-Transporter 1/metabolism , Polysaccharides/metabolism
4.
Biomaterials ; 302: 122298, 2023 11.
Article in English | MEDLINE | ID: mdl-37713762

ABSTRACT

The success of mRNA-based vaccines during the Covid-19 pandemic has highlighted the value of this new platform for vaccine development against infectious disease. However, the CD8+ T cell response remains modest with mRNA vaccines, and these do not induce mucosal immunity, which would be needed to prevent viral spread in the healthy population. To address this drawback, we developed a dendritic cell targeting mucosal vaccination vector, the homopentameric STxB. Here, we describe the highly efficient chemical synthesis of the protein, and its in vitro folding. This straightforward preparation led to a synthetic delivery tool whose biophysical and intracellular trafficking characteristics were largely indistinguishable from recombinant STxB. The chemical approach allowed for the generation of new variants with bioorthogonal handles. Selected variants were chemically coupled to several types of antigens derived from the mucosal viruses SARS-CoV-2 and type 16 human papillomavirus. Upon intranasal administration in mice, mucosal immunity, including resident memory CD8+ T cells and IgA antibodies was induced against these antigens. Our study thereby identifies a novel synthetic antigen delivery tool for mucosal vaccination with an unmatched potential to respond to an urgent medical need.


Subject(s)
CD8-Positive T-Lymphocytes , Pandemics , Mice , Humans , Animals , Vaccination , Vaccines, Synthetic , Antigens , Antibodies, Viral
5.
Cells ; 12(9)2023 04 30.
Article in English | MEDLINE | ID: mdl-37174690

ABSTRACT

Many molecular targets for cancer therapy are located in the cytosol. Therapeutic macromolecules are generally not able to spontaneously translocate across membranes to reach these cytosolic targets. Therefore a strong need exists for tools that enhance cytosolic delivery. Shiga toxin B-subunit (STxB) is used to deliver therapeutic principles to disease-relevant cells that express its receptor, the glycolipid Gb3. Based on its naturally existing membrane translocation capacity, STxB delivers antigens to the cytosol of Gb3-positive dendritic cells, leading to the induction of CD8+ T cells. Here, we have explored the possibility of further increasing the membrane translocation of STxB to enable other therapeutic applications. For this, our capacity to synthesize STxB chemically was exploited to introduce unnatural amino acids at different positions of the protein. These were then functionalized with hydrophobic entities to locally destabilize endosomal membranes. Intracellular trafficking of these functionalized STxB was measured by confocal microscopy and their cytosolic arrival with a recently developed highly robust, sensitive, and quantitative translocation assay. From different types of hydrophobic moieties that were linked to STxB, the most efficient configuration was determined. STxB translocation was increased by a factor of 2.5, paving the path for new biomedical opportunities.


Subject(s)
CD8-Positive T-Lymphocytes , Shiga Toxin , Cytosol/metabolism , Shiga Toxin/chemistry , Shiga Toxin/metabolism , Intracellular Membranes/metabolism , Endosomes/metabolism
6.
Front Bioeng Biotechnol ; 11: 1128371, 2023.
Article in English | MEDLINE | ID: mdl-36911201

ABSTRACT

Currently available enzyme replacement therapies for lysosomal storage diseases are limited in their effectiveness due in part to short circulation times and suboptimal biodistribution of the therapeutic enzymes. We previously engineered Chinese hamster ovary (CHO) cells to produce α-galactosidase A (GLA) with various N-glycan structures and demonstrated that elimination of mannose-6-phosphate (M6P) and conversion to homogeneous sialylated N-glycans prolonged circulation time and improved biodistribution of the enzyme following a single-dose infusion into Fabry mice. Here, we confirmed these findings using repeated infusions of the glycoengineered GLA into Fabry mice and further tested whether this glycoengineering approach, Long-Acting-GlycoDesign (LAGD), could be implemented on other lysosomal enzymes. LAGD-engineered CHO cells stably expressing a panel of lysosomal enzymes [aspartylglucosamine (AGA), beta-glucuronidase (GUSB), cathepsin D (CTSD), tripeptidyl peptidase (TPP1), alpha-glucosidase (GAA) or iduronate 2-sulfatase (IDS)] successfully converted all M6P-containing N-glycans to complex sialylated N-glycans. The resulting homogenous glycodesigns enabled glycoprotein profiling by native mass spectrometry. Notably, LAGD extended the plasma half-life of all three enzymes tested (GLA, GUSB, AGA) in wildtype mice. LAGD may be widely applicable to lysosomal replacement enzymes to improve their circulatory stability and therapeutic efficacy.

7.
Chembiochem ; 24(8): e202300093, 2023 04 17.
Article in English | MEDLINE | ID: mdl-36942862

ABSTRACT

This symposium is the third PSL (Paris Sciences & Lettres) Chemical Biology meeting (2016, 2019, 2023) held at Institut Curie. This initiative originally started at Institut de Chimie des Substances Naturelles (ICSN) in Gif-sur-Yvette (2013, 2014), under the directorship of Professor Max Malacria, with a strong focus on chemistry. It was then continued at the Institut Curie (2015) covering a larger scope, before becoming the official PSL Chemical Biology meeting. This latest edition was postponed twice for the reasons that we know. This has given us the opportunity to invite additional speakers of great standing. This year, Institut Curie hosted around 300 participants, including 220 on site and over 80 online. The pandemic has had, at least, the virtue of promoting online meetings, which we came to realize is not perfect but has its own merits. In particular, it enables those with restricted time and resources to take part in events and meetings, which can now accommodate unlimited participants. We apologize to all those who could not attend in person this time due to space limitation at Institut Curie.


Subject(s)
Biology , Humans , Paris
8.
Traffic ; 24(4): 190-212, 2023 04.
Article in English | MEDLINE | ID: mdl-36843549

ABSTRACT

Recent advances in the field demonstrate the high diversity and complexity of endocytic pathways. In the current study, we focus on the endocytosis of L1CAM. This glycoprotein plays a major role in the development of the nervous system, and is involved in cancer development and is associated with metastases and poor prognosis. Two L1CAM isoforms are subject to endocytosis: isoform 1, described as a clathrin-mediated cargo; isoform 2, whose endocytosis has never been studied. Deciphering the molecular machinery of isoform 2 internalisation should contribute to a better understanding of its pathophysiological role. First, we demonstrated in our cellular context that both isoforms of L1CAM are mainly a clathrin-independent cargo, which was not expected for isoform 1. Second, the mechanism of L1CAM endocytosis is specifically mediated by the N-BAR domain protein endophilin-A3. Third, we discovered PSTPIP1, an F-BAR domain protein, as a novel actor in this endocytic process. Finally, we identified galectins as endocytic partners and negative regulators of L1CAM endocytosis. In summary, the interplay of the BAR proteins endophilin-A3 and PSTPIP1, and galectins fine tune the clathrin-independent endocytosis of L1CAM.


Subject(s)
Clathrin , Neural Cell Adhesion Molecule L1 , Clathrin/metabolism , Protein Isoforms , Endocytosis/physiology , Galectins
9.
J Phys Chem B ; 126(48): 10000-10017, 2022 12 08.
Article in English | MEDLINE | ID: mdl-36413808

ABSTRACT

Galectin-3 (Gal3) is a ß-galactoside binding lectin that mediates many physiological functions, including the binding of cells to the extracellular matrix for which the glycoprotein α5ß1 integrin is of critical importance. The mechanisms by which Gal3 interacts with membranes have not been widely explored to date due to the complexity of cell membranes and the difficulty of integrin reconstitution within model membranes. Herein, to study their interaction, Gal3 and α5ß1 were purified, and the latter reconstituted into pore-suspended lipid bilayers comprised eggPC:eggPA. Using electrochemical impedance and fluorescence lifetime correlation spectroscopy, we found that on incubation with low nanomolar concentrations of wild-type Gal3, the membrane's admittance and fluidity, as well as integrin's lateral diffusivity, were enhanced. These effects were diminished in the following conditions: (i) absence of integrin, (ii) presence of lactose as a competitive inhibitor of glycan-Gal3 interaction, and (iii) use of a Gal3 mutant that lacked the N-terminal oligomerization domain (Gal3ΔNter). These findings indicated that WTGal3 oligomerized on α5ß1 integrin in a glycan-dependent manner and that the N-terminal domain interacted directly with membranes in a way that is yet to be fully understood. At concentrations above 10 nM of WTGal3, membrane capacitance started to decrease and very slowly diffusing molecular species appeared, which indicated the formation of protein clusters made from WTGal3-α5ß1 integrin assemblies. Overall, our study demonstrates the capacity of WTGal3 to oligomerize in a cargo protein-dependent manner at low nanomolar concentrations. Of note, these WTGal3 oligomers appeared to have membrane active properties that could only be revealed using our sensitive methods. At slightly higher WTGal3 concentrations, the capacity to generate lateral assemblies between cargo proteins was observed. In cells, this could lead to the construction of tubular endocytic pits according to the glycolipid-lectin (GL-Lect) hypothesis or to the formation of galectin lattices, depending on cargo glycoprotein stability at the membrane, the local Gal3 concentration, or plasma membrane intrinsic parameters. The study also demonstrates the utility of microcavity array-suspended lipid bilayers to address the biophysics of transmembrane proteins.


Subject(s)
Galectin 3 , Lipid Bilayers , Biophysics , Glycoproteins , Integrins
10.
iScience ; 25(11): 105323, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36310581

ABSTRACT

Gangliosides are present and concentrated in axons and implicated in axon-myelin interactions, but how ganglioside composition changes during myelin formation is not known. Here, we present a direct infusion (shotgun) lipidomics method to analyze gangliosides in small amounts of tissue reproducibly and with high sensitivity. We resolve the mouse ganglioside lipidome during development and adulthood and determine the ganglioside content of mice lacking the St3gal5 and B4galnt1 genes that synthesize most ganglioside species. Our results reveal substantial changes in the ganglioside lipidome during the formation of myelinated nerve fibers. In sum, we provide insights into the CNS ganglioside lipidome with a quantitative and sensitive mass spectrometry method. Since this method is compatible with global lipidomic profiling, it will provide insights into ganglioside function in physiology and pathology.

11.
EMBO Mol Med ; 14(9): e15377, 2022 09 07.
Article in English | MEDLINE | ID: mdl-35929194

ABSTRACT

Lysosomes are cell organelles that degrade macromolecules to recycle their components. If lysosomal degradative function is impaired, e.g., due to mutations in lysosomal enzymes or membrane proteins, lysosomal storage diseases (LSDs) can develop. LSDs manifest often with neurodegenerative symptoms, typically starting in early childhood, and going along with a strongly reduced life expectancy and quality of life. We show here that small molecule activation of the Ca2+ -permeable endolysosomal two-pore channel 2 (TPC2) results in an amelioration of cellular phenotypes associated with LSDs such as cholesterol or lipofuscin accumulation, or the formation of abnormal vacuoles seen by electron microscopy. Rescue effects by TPC2 activation, which promotes lysosomal exocytosis and autophagy, were assessed in mucolipidosis type IV (MLIV), Niemann-Pick type C1, and Batten disease patient fibroblasts, and in neurons derived from newly generated isogenic human iPSC models for MLIV and Batten disease. For in vivo proof of concept, we tested TPC2 activation in the MLIV mouse model. In sum, our data suggest that TPC2 is a promising target for the treatment of different types of LSDs, both in vitro and in-vivo.


Subject(s)
Lysosomal Storage Diseases , Mucolipidoses , Neuronal Ceroid-Lipofuscinoses , Animals , Child, Preschool , Humans , Lysosomes/metabolism , Mice , Mucolipidoses/genetics , Mucolipidoses/metabolism , Neuronal Ceroid-Lipofuscinoses/metabolism , Quality of Life
12.
iScience ; 25(7): 104537, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35769882

ABSTRACT

The development of anti-infectives against a large range of AB-like toxin-producing bacteria includes the identification of compounds disrupting toxin transport through both the endolysosomal and retrograde pathways. Here, we performed a high-throughput screening of compounds blocking Rac1 proteasomal degradation triggered by the Cytotoxic Necrotizing Factor-1 (CNF1) toxin, which was followed by orthogonal screens against two toxins that hijack the endolysosomal (diphtheria toxin) or retrograde (Shiga-like toxin 1) pathways to intoxicate cells. This led to the identification of the molecule C910 that induces the enlargement of EEA1-positive early endosomes associated with sorting defects of CNF1 and Shiga toxins to their trafficking pathways. C910 protects cells against eight bacterial AB toxins and the CNF1-mediated pathogenic Escherichia coli invasion. Interestingly, C910 reduces influenza A H1N1 and SARS-CoV-2 viral infection in vitro. Moreover, parenteral administration of C910 to mice resulted in its accumulation in lung tissues and a reduction in lethal influenza infection.

13.
Methods Mol Biol ; 2507: 1-18, 2022.
Article in English | MEDLINE | ID: mdl-35773574

ABSTRACT

Transmembrane proteins (or integral membrane proteins) are synthesized in the endoplasmic reticulum where most of them are core glycosylated prior to folding and in some cases assembly into quaternary structures. Correctly glycosylated, folded, and assembled transmembrane proteins are then shuttled to the Golgi apparatus for additional posttranslational modifications such as complex-type glycosylations, sulfation or proteolytic clipping. At the plasma membrane, the glycosylated extracellular domains are key to communicate with the cellular environment for a variety of functions, such as binding to the extracellular matrix for cell adhesion and migration, to neighboring cells for cell-cell interaction, or to extracellular components for nutrient uptake and cell signaling. Intracellular domains are essential to mediate signaling cascades, or to connect to cytosolic adaptors for internalization and intracellular compartmentalization. Despite its importance for the understanding of molecular mechanisms of transmembrane protein function, the determination of their structures has remained a challenging task. In recent years, their reconstitution in lipid nanodiscs in combination with high resolution cryo-electron microscopy has provided novel avenues to render this process more accessible. Here, we describe detailed protocols for the solubilization of heavily glycosylated α5ß1 integrin from rat livers, its purification and reconstitution into nanodiscs. At the plasma membrane of many cells, including tumor metastases, this essential heterodimeric transmembrane protein mediates the communication between extracellular matrix and cytosolic cytoskeleton in processes of cell adhesion and migration. We expect that the protocols that are described here will provide new opportunities for the determination of the full structure of α5ß1 integrin, as well as for the understanding of how interacting partners can regulate function and activity of this transmembrane protein.


Subject(s)
Cell Communication , Integrins , Animals , Cell Adhesion/physiology , Cell Communication/physiology , Cryoelectron Microscopy , Liver , Rats
14.
Toxins (Basel) ; 14(4)2022 03 28.
Article in English | MEDLINE | ID: mdl-35448851

ABSTRACT

Protein toxins from bacteria and plants are a serious threat to human and animal health [...].


Subject(s)
Toxins, Biological , Animals , Bacteria , Toxins, Biological/toxicity
15.
Toxins (Basel) ; 14(3)2022 03 10.
Article in English | MEDLINE | ID: mdl-35324699

ABSTRACT

Immunotherapy against cancer and infectious disease holds the promise of high efficacy with minor side effects. Mucosal vaccines to protect against tumors or infections disease agents that affect the upper airways or the lung are still lacking, however. One mucosal vaccine candidate is the B-subunit of Shiga toxin, STxB. In this review, we compare STxB to other immunotherapy vectors. STxB is a non-toxic protein that binds to a glycosylated lipid, termed globotriaosylceramide (Gb3), which is preferentially expressed by dendritic cells. We review the use of STxB for the cross-presentation of tumor or viral antigens in a MHC class I-restricted manner to induce humoral immunity against these antigens in addition to polyfunctional and persistent CD4+ and CD8+ T lymphocytes capable of protecting against viral infection or tumor growth. Other literature will be summarized that documents a powerful induction of mucosal IgA and resident memory CD8+ T cells against mucosal tumors specifically when STxB-antigen conjugates are administered via the nasal route. It will also be pointed out how STxB-based vaccines have been shown in preclinical cancer models to synergize with other therapeutic modalities (immune checkpoint inhibitors, anti-angiogenic therapy, radiotherapy). Finally, we will discuss how molecular aspects such as low immunogenicity, cross-species conservation of Gb3 expression, and lack of toxicity contribute to the competitive positioning of STxB among the different DC targeting approaches. STxB thereby appears as an original and innovative tool for the development of mucosal vaccines in infectious diseases and cancer.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Antigens , Humans , Shiga Toxin/metabolism , Vaccination
16.
J Cell Sci ; 135(6)2022 03 15.
Article in English | MEDLINE | ID: mdl-35311906

ABSTRACT

Endocytosis is indispensable for multiple cellular processes, including signalling, cell adhesion, migration, as well as the turnover of plasma membrane lipids and proteins. The dynamic interplay and regulation of different endocytic entry routes requires multiple cytoskeletal elements, especially motor proteins that bind to membranes and transport vesicles along the actin and microtubule cytoskeletons. Dynein and kinesin motor proteins transport vesicles along microtubules, whereas myosins drive vesicles along actin filaments. Here, we present a brief overview of multiple endocytic pathways and our current understanding of the involvement of these motor proteins in the regulation of the different cellular entry routes. We particularly focus on structural and mechanistic details of the retrograde motor proteins dynein and myosin VI (also known as MYO6), along with their adaptors, which have important roles in the early events of endocytosis. We conclude by highlighting the key challenges in elucidating the involvement of motor proteins in endocytosis and intracellular membrane trafficking.


Subject(s)
Dyneins , Kinesins , Dyneins/metabolism , Endocytosis/physiology , Microtubules/metabolism , Myosin Heavy Chains , Myosins/metabolism
17.
Methods Mol Biol ; 2442: 367-390, 2022.
Article in English | MEDLINE | ID: mdl-35320536

ABSTRACT

The GlycoLipid-Lectin (GL-Lect) hypothesis provides a conceptual framework to explain how endocytic pits are built in processes of clathrin-independent endocytosis. According to this hypothesis, oligomeric cellular or pathogenic lectins interact with glycosylated plasma membrane lipids in a way such as to drive the formation of tubular endocytic pits that then detach to generate clathrin-independent endocytic carriers for the cellular uptake of cellular or pathogenic products. This process operates in a complementary manner to the conventional clathrin pathway for biological function linked to cell polarity. Up to date, the premises of the GL-Lect hypothesis have been based on model membrane and cell culture experiments. It has therefore become urgent to extend its exploration to complex organisms. In the current protocol, we describe methods to study the endocytosis and transcytosis of a key driver of the GL-Lect mechanism, the cellular galectin-3, and of one of its cargoes, lactotransferrin, in enterocytes of the intact jejunum of mice. In a step-by-step manner, we present the generation of fluorescent endocytic ligands, tissue preparation for cellular uptake measurements, binding and internalization assays, tissue fixation and preparation for sectioning, light and electron microscopical observations, and quantification of data by image processing. Pitfalls are discussed to optimize the chances of success with the described methods.


Subject(s)
Galectin 3 , Jejunum , Transcytosis , Animals , Clathrin/metabolism , Endocytosis , Galectin 3/metabolism , Jejunum/metabolism , Mice
18.
Biol Cell ; 114(6): 160-176, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35304921

ABSTRACT

BACKGROUND INFORMATION: Like most other cell surface proteins, α5 ß1 integrin is glycosylated, which is required for its various activities in ways that mostly remain to be determined. RESULTS: Here, we have established the first comprehensive site-specific glycan map of α5 ß1 integrin that was purified from a natural source, that is, rat liver. This analysis revealed striking site selective variations in glycan composition. Complex bi, tri, or tetraantennary N-glycans were predominant at various proportions at most potential N-glycosylation sites. A few of these sites were nonglycosylated or contained high mannose or hybrid glycans, indicating that early N-glycan processing was hindered. Almost all complex N-glycans had fully galactosylated and sialylated antennae. Moderate levels of core fucosylation and high levels of O-acetylation of NeuAc residues were observed at certain sites. An O-linked HexNAc was found in an EGF-like domain of ß1 integrin. The extensive glycan information that results from our study was projected onto a map of α5 ß1 integrin that was obtained by homology modeling. We have used this model for the discussion of how glycosylation might be used in the functional cycle of α5 ß1 integrin. A striking example concerns the involvement of glycan-binding galectins in the regulation of the molecular homeostasis of glycoproteins at the cell surface through the formation of lattices or endocytic pits according to the glycolipid-lectin (GL-Lect) hypothesis. CONCLUSION: We expect that the glycoproteomics data of the current study will serve as a resource for the exploration of structural mechanisms by which glycans control α5 ß1 integrin activity and endocytic trafficking. SIGNIFICANCE: Glycosylation of α5 ß1 integrin has been implicated in multiple aspects of integrin function and structure. Yet, detailed knowledge of its glycosylation, notably the specific sites of glycosylation, is lacking. Furthermore, the α5 ß1 integrin preparation that was analyzed here is from a natural source, which is of importance as there is not a lot of literature in the field about the glycosylation of "native" glycoproteins.


Subject(s)
Integrin alpha5 , Integrin beta1 , Polysaccharides , Animals , Glycoproteins/chemistry , Glycosylation , Integrin alpha5/chemistry , Integrin beta1/chemistry , Liver/metabolism , Polysaccharides/chemistry , Rats
19.
Mol Cancer Ther ; 21(4): 686-699, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35086950

ABSTRACT

The B subunit of bacterial Shiga toxin (STxB) is nontoxic and has low immunogenicity. Its receptor, the glycosphingolipid Gb3/CD77, is overexpressed on the cell surface of human colorectal cancer. We tested whether genetic porcine models, closely resembling human anatomy and pathophysiology, can be used to exploit the tumor-targeting potential of STxB. In accordance with findings on human colorectal cancer, the pig model APC1311 bound STxB in colorectal tumors, but not in normal colon or jejunum, except for putative enteroendocrine cells. In primary tumor cells from endoscopic biopsies, STxB was rapidly taken up along the retrograde intracellular route to the Golgi, whereas normal colon organoids did not bind or internalize STxB. Next, we tested a porcine model (TP53LSL-R167H) for osteosarcoma, a tumor entity with a dismal prognosis and insufficient treatment options, hitherto not known to express Gb3. Pig osteosarcoma strongly bound StxB and expressed the Gb3 synthase 1,4-galactosyltransferase (A4GALT). Primary osteosarcoma cells, but not normal osteoblasts, rapidly internalized fluorescently labeled STxB along the retrograde route to the Golgi. Importantly, six of eight human osteosarcoma cell lines expressed A4GALT mRNA and showed prominent intracellular uptake of STxB. The physiologic role of A4GALT was tested by CRISPR/Cas9 mutagenesis in porcine LLC-PK1 kidney epithelial cells and RNAi in MG-63 human osteosarcoma cells. A4GALT deficiency or knockdown abolished STxB uptake and led to significantly reduced cell migration and proliferation, hinting toward a putative tumor-promoting role of Gb3. Thus, pig models are suitable tools for STxB-based tumor targeting and may allow "reverse-translational" predictions on human tumor biology.


Subject(s)
Bone Neoplasms , Colorectal Neoplasms , Osteosarcoma , Animals , Colorectal Neoplasms/genetics , Humans , Osteosarcoma/genetics , Shiga Toxin , Shiga Toxins , Swine
20.
Bioconjug Chem ; 33(1): 180-193, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34986302

ABSTRACT

Targeted contrast agents (CAs) can improve magnetic resonance imaging (MRI) for accurate cancer diagnosis. In this work, we used the Shiga toxin B-subunit (STxB) as a targeting agent, which binds to Gb3, a glycosphingolipid highly overexpressed on the surface of tumor cells. We developed STxB-targeted MRI probes from cyclic peptide scaffolds functionalized with six to nine monoamide DO3A[Gd(III)] chelates. The influence of structural constraints on the longitudinal relaxivity (r1) of the CAs has been studied. The cyclic peptide carrying nine monoamide DO3A[Gd(III)] exhibited a r1 per compound of 32 and 93 mM-1s-1 at 9.4 and 1.5 T, respectively. Its conjugation to the pentameric STxB protein led to a 70 kDa compound with a higher r1 of 150 and 475 mM-1 s-1 at 9.4 and 1.5 T, respectively. Specific accumulation and cellular distribution of this conjugate in Gb3-expressing cancer cells were demonstrated using immunofluorescence microscopy and quantified by an inductively coupled plasma-mass spectrometry dosage of Gd(III). Such an agent should enable the in vivo detection by MRI of tumors expressing Gb3 receptors.


Subject(s)
Contrast Media
SELECTION OF CITATIONS
SEARCH DETAIL
...