Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
bioRxiv ; 2023 May 04.
Article in English | MEDLINE | ID: mdl-37205604

ABSTRACT

Progress in cytokine engineering is driving therapeutic translation by overcoming the inherent limitations of these proteins as drugs. The interleukin-2 (IL-2) cytokine harbors great promise as an immune stimulant for cancer treatment. However, the cytokine's concurrent activation of both pro-inflammatory immune effector cells and anti-inflammatory regulatory T cells, its toxicity at high doses, and its short serum half-life have limited clinical application. One promising approach to improve the selectivity, safety, and longevity of IL-2 is complexation with anti-IL-2 antibodies that bias the cytokine towards the activation of immune effector cells (i.e., effector T cells and natural killer cells). Although this strategy shows therapeutic potential in preclinical cancer models, clinical translation of a cytokine/antibody complex is complicated by challenges in formulating a multi-protein drug and concerns about complex stability. Here, we introduce a versatile approach to designing intramolecularly assembled single-agent fusion proteins (immunocytokines, ICs) comprising IL-2 and a biasing anti-IL-2 antibody that directs the cytokine's activities towards immune effector cells. We establish the optimal IC construction and further engineer the cytokine/antibody affinity to improve immune biasing function. We demonstrate that our IC preferentially activates and expands immune effector cells, leading to superior antitumor activity compared to natural IL-2 without inducing toxicities associated with IL-2 administration. Collectively, this work presents a roadmap for the design and translation of immunomodulatory cytokine/antibody fusion proteins.

2.
Biosci Rep ; 41(10)2021 10 29.
Article in English | MEDLINE | ID: mdl-34677582

ABSTRACT

The role of human prostatic acid phosphatase (PAcP, P15309|PPAP_HUMAN) in prostate cancer was investigated using a new proteomics tool termed signal sequence swapping (replacement of domains from the native cleaved amino terminal signal sequence of secretory/membrane proteins with corresponding regions of functionally distinct signal sequence subtypes). This manipulation preferentially redirects proteins to different pathways of biogenesis at the endoplasmic reticulum (ER), magnifying normally difficult to detect subsets of the protein of interest. For PAcP, this technique reveals three forms identical in amino acid sequence but profoundly different in physiological functions, subcellular location, and biochemical properties. These three forms of PAcP can also occur with the wildtype PAcP signal sequence. Clinical specimens from patients with prostate cancer demonstrate that one form, termed PLPAcP, correlates with early prostate cancer. These findings confirm the analytical power of this method, implicate PLPAcP in prostate cancer pathogenesis, and suggest novel anticancer therapeutic strategies.


Subject(s)
Acid Phosphatase/metabolism , Biomarkers, Tumor/metabolism , Cell Proliferation , Endoplasmic Reticulum/enzymology , Prostatic Neoplasms/enzymology , Acid Phosphatase/genetics , Androgens/pharmacology , Antineoplastic Agents, Hormonal/pharmacology , Biomarkers, Tumor/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm , Early Detection of Cancer , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/pathology , Humans , Isoenzymes , Male , Predictive Value of Tests , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Protein Conformation , Structure-Activity Relationship
3.
Biosci Rep ; 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34605872

ABSTRACT

The role of human prostatic acid phosphatase (PAcP, P15309|PPAP_HUMAN) in prostate cancer was investigated using a new proteomic tool termed signal sequence swapping (replacement of domains from the native cleaved amino terminal signal sequence of secretory/membrane proteins with corresponding regions of functionally distinct signal sequence subtypes). This manipulation preferentially redirects proteins to different pathways of biogenesis at the endoplasmic reticulum, magnifying normally difficult to detect subsets of the protein of interest. For PAcP this technique reveals three forms identical in amino acid sequence but profoundly different in physiological functions, subcellular location, and biochemical properties. These three forms of PAcP can also occur with the wild-type PAcP signal sequence. Clinical specimens from patients with prostate cancer demonstrate that one form, termed PLPAcP, correlates with early prostate cancer. These findings confirm the analytical power of this method, implicate PLPAcP in prostate cancer pathogenesis, and suggest novel anticancer therapeutic strategies.

4.
Curr Protoc Mol Biol ; 132(1): e126, 2020 09.
Article in English | MEDLINE | ID: mdl-32965799

ABSTRACT

Transmembrane proteins are responsible for many critical cellular functions and represent one of the largest families of drug targets. However, these proteins, especially multipass transmembrane proteins, are difficult to study because they must be embedded in a lipid bilayer to maintain their native conformations. The development of the virion display (VirD) technology enables transmembrane proteins to be integrated into the viral envelope of herpes simplex virus 1 (HSV-1). Combining high-throughput cloning, expression, and purification techniques, VirD technology has been applied to the largest set of human transmembrane proteins, namely G-protein-coupled receptors, and has allowed the identification of interactions that are both specific and functional. This article describes the procedures to integrate an open reading frame for any transmembrane protein into the HSV-1 genome and produce recombinant HSV-1 virus to ultimately generate pure VirD virions for biological and pharmaceutical studies. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Gateway cloning of transmembrane proteins Support Protocol 1: Ethanol precipitation of bacterial artificial chromosomal DNA Support Protocol 2: Preparation of competent cells Basic Protocol 2: Production of recombinant HSV-1 virions.


Subject(s)
Cell Surface Display Techniques/methods , Herpesvirus 1, Human/genetics , Membrane Proteins/genetics , Virion/genetics
5.
Front Microbiol ; 11: 1662, 2020.
Article in English | MEDLINE | ID: mdl-32793153

ABSTRACT

Still relevant after 19 years, the FAO/WHO definition of probiotics can be translated into four simple and pragmatic criteria allowing one to conclude if specific strains of microorganisms qualify as a probiotic for use in foods and dietary supplements. Probiotic strains must be (i) sufficiently characterized; (ii) safe for the intended use; (iii) supported by at least one positive human clinical trial conducted according to generally accepted scientific standards or as per recommendations and provisions of local/national authorities when applicable; and (iv) alive in the product at an efficacious dose throughout shelf life. We provide clarity and detail how each of these four criteria can be assessed. The wide adoption of these criteria is necessary to ensure the proper use of the word probiotic in scientific publications, on product labels, and in communications with regulators and the general public.

6.
Curr Opin Biotechnol ; 61: 142-152, 2020 02.
Article in English | MEDLINE | ID: mdl-31945498

ABSTRACT

Streptococcus thermophilus is a microorganism extensively used in cheese and yogurt fermentation. Its economic value, combined with an increasing demand for novel starter cultures with improved functionality, foster numerous research efforts to unravel key aspects of S. thermophilus physiology. Several phenotypic traits are linked to industrial applications. These include sugar metabolism, proteolysis and the production of important metabolites such as acetaldehyde, exopolysaccharides, and vitamins, which affect the organoleptic properties of fermented foods and protocooperation with Lactobacillus delbrueckii subsp. bulgaricus. The advent of new molecular tools including a genome editing toolbox facilitates engineering S. thermophilus for physiological studies as well as generating strains with improved technological and/or functional characteristics.


Subject(s)
Lactobacillus delbrueckii , Streptococcus thermophilus , Biotechnology , Fermentation , Yogurt
7.
Front Bioeng Biotechnol ; 8: 623700, 2020.
Article in English | MEDLINE | ID: mdl-33520973

ABSTRACT

Many antibiotics and antimicrobial agents have the bacterial cell envelope as their primary target, interfering with functions such as synthesis of peptidoglycan, membrane stability and permeability, and attachment of surface components. The cell envelope is the outermost barrier of the bacterial cell, conferring protection against environmental stresses, and maintaining structural integrity and stability of the growing cell, while still allowing for required metabolism. In this work, inhibitory concentrations of several different cell envelope targeting antibiotics and antimicrobial agents were used to select for derivatives of lactic acid bacteria (LAB) with improved properties for dairy applications. Interestingly, we observed that for several LAB species a fraction of the isolates had improved milk texturizing capabilities. To further improve our understanding of the mechanisms underlying the improved rheology and to validate the efficacy of this method for strain improvement, genetic and physiological characterization of several improved derivatives was performed. The results showed that the identified genetic changes are diverse and affect also other cellular functions than the targeted cell surface. In short, this study describes a new versatile and powerful toolbox based on targeting of the cell envelope to select for LAB derivatives with improved phenotypic traits for dairy applications.

8.
Dev Cell ; 49(3): 393-408.e7, 2019 05 06.
Article in English | MEDLINE | ID: mdl-30982660

ABSTRACT

The NAD+-dependent deacetylase Sirtuin 1 (SIRT1) is down-regulated in triple-negative breast cancer. To determine the mechanistic basis by which reduced SIRT1 expression influences processes related to certain aggressive cancers, we examined the consequences of depleting breast cancer cells of SIRT1. We discovered that reducing SIRT1 levels decreased the expression of one particular subunit of the vacuolar-type H+ ATPase (V-ATPase), which is responsible for proper lysosomal acidification and protein degradation. This impairment in lysosomal function caused a reduction in the number of multi-vesicular bodies (MVBs) targeted for lysosomal degradation and resulted in larger MVBs prior to their fusing with the plasma membrane to release their contents. Collectively, these findings help explain how reduced SIRT1 expression, by disrupting lysosomal function and generating a secretome comprising exosomes with unique cargo and soluble hydrolases that degrade the extracellular matrix, can promote processes that increase breast-cancer-cell survival and invasion.


Subject(s)
Breast Neoplasms/metabolism , Lysosomes/metabolism , Sirtuin 1/deficiency , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Survival/physiology , Exosomes/metabolism , Female , Homeostasis , Humans , Multivesicular Bodies/metabolism , Neoplasm Invasiveness , Sirtuin 1/metabolism , Vacuolar Proton-Translocating ATPases/metabolism
9.
PLoS One ; 14(1): e0210363, 2019.
Article in English | MEDLINE | ID: mdl-30645638

ABSTRACT

Whole-genome sequencing and phenotypic testing of 104 strains of Bacillus licheniformis and Bacillus paralicheniformis from a variety of sources and time periods was used to characterize the genetic background and evolution of (putative) antimicrobial resistance mechanisms. Core proteins were identified in draft genomes and a phylogenetic analysis based on single amino acid polymorphisms allowed the species to be separated into two phylogenetically distinct clades with one outlier. Putative antimicrobial resistance genes were identified and mapped. A chromosomal ermD gene was found at the same location in all B. paralichenformis and in 27% of B. licheniformis genomes. Erythromycin resistance correlated very well with the presence of ermD. The putative streptomycin resistance genes, aph and aadK, were found in the chromosome of all strains as adjacent loci. Variations in amino acid sequence did not correlate with streptomycin susceptibility although the species were less susceptible than other Bacillus species. A putative chloramphenicol resistance gene (cat), encoding a novel chloramphenicol acetyltransferase protein was also found in the chromosome of all strains. Strains encoding a truncated CAT protein were sensitive to chloramphenicol. For all four resistance genes, the diversity and genetic context followed the overall phylogenetic relationship. No potentially mobile genetic elements were detected in their vicinity. Moreover, the genes were only distantly related to previously-described cat, aph, aad and erm genes present on mobile genetic elements or in other species. Thus, these genes are suggested to be intrinsic to B. licheniformis and B. paralicheniformis and part of their ancient resistomes. Since there is no evidence supporting horizontal transmission, these genes are not expected to add to the pool of antibiotic resistance elements considered to pose a risk to human or animal health. Whole-genome based phylogenetic and sequence analysis, combined with phenotypic testing, is proposed to be suitable for determining intrinsic resistance and evolutionary relationships.


Subject(s)
Bacillus licheniformis/drug effects , Bacillus licheniformis/genetics , Bacillus/drug effects , Bacillus/genetics , Drug Resistance, Bacterial/genetics , Genes, Bacterial , Animals , Bacillus/classification , Bacillus licheniformis/classification , Bacterial Proteins/genetics , Chloramphenicol Resistance/genetics , DNA, Bacterial/genetics , Erythromycin/pharmacology , Evolution, Molecular , Gene Transfer, Horizontal , Genome, Bacterial , Humans , Microbial Sensitivity Tests , Models, Genetic , Multilocus Sequence Typing , Phylogeny , Streptomycin/pharmacology
10.
Appl Environ Microbiol ; 84(19)2018 10 01.
Article in English | MEDLINE | ID: mdl-30030233

ABSTRACT

Bacillus megaterium (n = 29), Bacillus velezensis (n = 26), Bacillus amyloliquefaciens (n = 6), Bacillus paralicheniformis (n = 28), and Bacillus licheniformis (n = 35) strains from different sources, origins, and time periods were tested for the MICs for nine antimicrobial agents by the CLSI-recommended method (Mueller-Hinton broth, 35°C, for 18 to 20 h), as well as with a modified CLSI method (Iso-Sensitest [IST] broth, 37°C [35°C for B. megaterium], 24 h). This allows a proposal of species-specific epidemiological cutoff values (ECOFFs) for the interpretation of antimicrobial resistance in these species. MICs determined by the modified CLSI method were 2- to 16-fold higher than with the CLSI-recommended method for several antimicrobials. The MIC distributions differed between species for five of the nine antimicrobials. Consequently, use of the modified CLSI method and interpretation of resistance by use of species-specific ECOFFs is recommended. The genome sequences of all strains were determined and used for screening for resistance genes against the ResFinder database and for multilocus sequence typing. A putative chloramphenicol acetyltransferase (cat) gene was found in one B. megaterium strain with an elevated chloramphenicol MIC compared to the other B. megaterium strains. In B. velezensis and B. amyloliquefaciens, a putative tetracycline efflux gene, tet(L), was found in all strains (n = 27) with reduced tetracycline susceptibility but was absent in susceptible strains. All B. paralicheniformis and 23% of B. licheniformis strains had elevated MICs for erythromycin and harbored ermD The presence of these resistance genes follows taxonomy suggesting they may be intrinsic rather than horizontally acquired. Reduced susceptibility to chloramphenicol, streptomycin, and clindamycin could not be explained in all species.IMPORTANCE When commercializing bacterial strains, like Bacillus spp., for feed applications or plant bioprotection, it is required that the strains are free of acquired antimicrobial resistance genes that could potentially spread to pathogenic bacteria, thereby adding to the pool of resistance genes that may cause treatment failures in humans or animals. Conversely, if antimicrobial resistance is intrinsic to a bacterial species, the risk of spreading horizontally to other bacteria is considered very low. Reliable susceptibility test methods and interpretation criteria at the species level are needed to accurately assess antimicrobial resistance levels. In the present study, tentative ECOFFs for five Bacillus species were determined, and the results showed that the variation in MICs followed the respective species. Moreover, putative resistance genes, which were detected by whole-genome sequencing and suggested to be intrinsic rather that acquired, could explain the resistance phenotypes in most cases.


Subject(s)
Animal Feed/microbiology , Anti-Bacterial Agents/pharmacology , Bacillus/drug effects , Food Additives/analysis , Animal Feed/analysis , Animal Feed/standards , Bacillus/classification , Chloramphenicol/pharmacology , Drug Resistance, Bacterial , Erythromycin/pharmacology , Food Additives/standards , Microbial Sensitivity Tests , Tetracycline/pharmacology
11.
Annu Rev Food Sci Technol ; 9: 411-428, 2018 03 25.
Article in English | MEDLINE | ID: mdl-29580139

ABSTRACT

The fermented foods industry is constantly seeking new starter cultures to deal with changing consumer preferences and new fermentation processes. New cultures can either be composed of strains isolated from nature or improved derivatives of existing isolates. A variety of techniques involving natural selection and evolution are available to enhance the performance of existing strains, including the isolation of mutants with desired properties, adaptive laboratory evolution, genome shuffling, and genome editing. Numerous examples of traits that can be improved are provided. These include resistance to bacteriophages; the secretion of glucose to increase sweetness; the production of vitamins, antifungal compounds, bacteriocins, texture, or aroma; enhancement of acidification rates and acid tolerance; and elimination of biofilm formation. Careful consideration is required to ensure the developed strains are suitable for the desired purpose, as some approaches may lead to regulatory concerns.


Subject(s)
Evolution, Molecular , Fermented Foods , Food Microbiology , Selection, Genetic , Bacillus/genetics , Bacillus/metabolism , Dairy Products/microbiology , Fermentation , Gene Editing , Lactobacillales/genetics , Lactobacillales/metabolism , Mutation , Odorants
12.
Microb Cell Fact ; 16(1): 230, 2017 Dec 21.
Article in English | MEDLINE | ID: mdl-29268733

ABSTRACT

Industrial fermentations based on micro-organisms such as the lactic acid bacteria (LAB) play an important role in several industries globally and represent multi-billion Euro/dollar businesses. LAB provide a natural way to produce safe, sustainable, and environmentally friendly products for a variety of industries. Product innovation is a key requirement for these industries to survive and grow globally. However, the development of new products may be affected by two man-made constraints; the Nagoya Protocol on benefit sharing and the opposition to the use of modern biotechnology for strain improvement. An expert workshop was held in Amsterdam, May 10-11, 2017 to discuss these challenges; a number of conclusions and recommendations were formulated and will be presented herein.


Subject(s)
Biotechnology/trends , Lactobacillales/metabolism , Fermentation , Lactobacillales/genetics
13.
Cancer Res ; 77(14): 3931-3941, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28487384

ABSTRACT

The Notch ligand DLL3 has emerged as a novel therapeutic target expressed in small cell lung cancer (SCLC) and high-grade neuroendocrine carcinomas. Rovalpituzumab teserine (Rova-T; SC16LD6.5) is a first-in-class DLL3-targeted antibody-drug conjugate with encouraging initial safety and efficacy profiles in SCLC in the clinic. Here we demonstrate that tumor expression of DLL3, although orders of magnitude lower in surface protein expression than typical oncology targets of immunoPET, can serve as an imaging biomarker for SCLC. We developed 89Zr-labeled SC16 antibody as a companion diagnostic agent to facilitate selection of patients for treatment with Rova-T based on a noninvasive interrogation of the in vivo status of DLL3 expression using PET imaging. Despite low cell-surface abundance of DLL3, immunoPET imaging with 89Zr-labeled SC16 antibody enabled delineation of subcutaneous and orthotopic SCLC tumor xenografts as well as distant organ metastases with high sensitivity. Uptake of the radiotracer in tumors was concordant with levels of DLL3 expression and, most notably, DLL3 immunoPET yielded rank-order correlation for response to SC16LD6.5 therapy in SCLC patient-derived xenograft models. Cancer Res; 77(14); 3931-41. ©2017 AACR.


Subject(s)
Intracellular Signaling Peptides and Proteins/biosynthesis , Lung Neoplasms/metabolism , Membrane Proteins/biosynthesis , Small Cell Lung Carcinoma/metabolism , A549 Cells , Animals , Cell Line, Tumor , Female , Heterografts , Humans , Immunoconjugates , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/immunology , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Membrane Proteins/genetics , Membrane Proteins/immunology , Mice , Mice, Nude , Neoplasm Metastasis , Positron-Emission Tomography , Small Cell Lung Carcinoma/diagnostic imaging , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology
14.
Cancers (Basel) ; 8(12)2016 Dec 09.
Article in English | MEDLINE | ID: mdl-27941677

ABSTRACT

The generation and release of membrane-enclosed packets from cancer cells, called extracellular vesicles (EVs), play important roles in propagating transformed phenotypes, including promoting cell survival. EVs mediate their effects by transferring their contents, which include specific proteins and nucleic acids, to target cells. However, how the cargo and function of EVs change in response to different stimuli remains unclear. Here, we discovered that treating highly aggressive MDAMB231 breast cancer cells with paclitaxel (PTX), a chemotherapy that stabilizes microtubules, causes them to generate a specific class of EV, namely exosomes, that are highly enriched with the cell survival protein and cancer marker, Survivin. Treating MDAMB231 cells with a variety of other chemotherapeutic agents, and inhibitors that block cell growth and survival, did not have the same effect as PTX, with the exception of nocodazole, another inhibitor of microtubule dynamics. Exosomes isolated from PTX-treated MDAMB231 cells strongly promoted the survival of serum-starved and PTX-treated fibroblasts and SKBR3 breast cancer cells, an effect that was ablated when Survivin was knocked-down from these vesicles using siRNA. These findings underscore how the enrichment of a specific cargo in exosomes promotes cell survival, as well as can potentially serve as a marker of PTX resistance.

15.
Appl Environ Microbiol ; 82(12): 3683-3692, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27107115

ABSTRACT

UNLABELLED: Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus are used in the fermentation of milk to produce yoghurt. These species normally metabolize only the glucose moiety of lactose, secreting galactose and producing lactic acid as the main metabolic end product. We used multiple serial selection steps to isolate spontaneous mutants of industrial strains of S. thermophilus and L. delbrueckii subsp. bulgaricus that secreted glucose rather than galactose when utilizing lactose as a carbon source. Sequencing revealed that the S. thermophilus strains had mutations in the galKTEM promoter, the glucokinase gene, and genes encoding elements of the glucose/mannose phosphotransferase system (PTS). These strains metabolize galactose but are unable to phosphorylate glucose internally or via the PTS. The L. delbrueckii subsp. bulgaricus mutants had mutations in genes of the glucose/mannose PTS and in the pyruvate kinase gene. These strains cannot grow on exogenous glucose but are proficient at metabolizing internal glucose released from lactose by ß-galactosidase. The resulting strains can be combined to ferment milk, producing yoghurt with no detectable lactose, moderate levels of galactose, and high levels of glucose. Since glucose tastes considerably sweeter than either lactose or galactose, the sweetness of the yoghurt is perceptibly enhanced. These strains were produced without the use of recombinant DNA technology and can be used for the industrial production of yoghurt with enhanced intrinsic sweetness and low residual levels of lactose. IMPORTANCE: Based on a good understanding of the physiology of the lactic acid bacteria Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus, we were able, by selecting spontaneously occurring mutants, to change dramatically the metabolic products secreted into the growth medium. These mutants consume substantially more of the lactose, metabolize some of the galactose, and secrete the remaining galactose and most of the glucose back into the milk. This allows production of yoghurt with very low lactose levels and enhanced natural sweetness, because humans perceive glucose as sweeter than either lactose or galactose.


Subject(s)
Carbohydrate Metabolism , Lactobacillus delbrueckii/metabolism , Metabolic Engineering , Metabolic Networks and Pathways/genetics , Streptococcus thermophilus/metabolism , Yogurt/microbiology , DNA Mutational Analysis , Fermentation , Galactose/metabolism , Glucose/metabolism , Humans , Industrial Microbiology , Lactobacillus delbrueckii/genetics , Lactose/metabolism , Mutation , Selection, Genetic , Sequence Analysis, DNA , Streptococcus thermophilus/genetics , Yogurt/analysis
16.
Mol Cell Proteomics ; 14(9): 2420-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25636311

ABSTRACT

Histone post-translational modifications (PTMs) have a fundamental function in chromatin biology, as they model chromatin structure and recruit enzymes involved in gene regulation, DNA repair, and chromosome condensation. High throughput characterization of histone PTMs is mostly performed by using nano-liquid chromatography coupled to mass spectrometry. However, limitations in speed and stochastic sampling of data dependent acquisition methods in MS lead to incomplete discrimination of isobaric peptides and loss of low abundant species. In this work, we analyzed histone PTMs with a data-independent acquisition method, namely SWATH™ analysis. This approach allows for MS/MS-based quantification of all analytes without upfront assay development and no issues of biased and incomplete sampling. We purified histone proteins from human embryonic stem cells and mouse trophoblast stem cells before and after differentiation, and prepared them for MS analysis using the propionic anhydride protocol. Results on histone H3 peptides verified that sequential window acquisition of all theoretical mass spectra could accurately quantify peptides (<9% average coefficient of variation, CV) over four orders of magnitude, and we could discriminate isobaric and co-eluting peptides (e.g. H3K18ac and H3K23ac) using MS/MS-based quantification. This method provided high sensitivity and precision, supported by the fact that we could find significant differences for remarkably low abundance PTMs such as H3K9me2S10ph (relative abundance <0.02%). We performed relative quantification for few sample peptides using different fragment ions and observed high consistency (CV <15%) between the fragments. This indicated that different fragment ions can be used independently to achieve the same peptide relative quantification. Taken together, sequential window acquisition of all theoretical mass spectra proved to be an easy-to-use MS acquisition method to perform high quality MS/MS-based quantification of histone-modified peptides.


Subject(s)
Histones/isolation & purification , Peptides/chemistry , Protein Processing, Post-Translational , Proteomics/methods , Stem Cells/metabolism , Animals , Cells, Cultured , Chromatography, Liquid/methods , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Histones/metabolism , Humans , Mice , Stem Cells/cytology , Tandem Mass Spectrometry/methods , Trophoblasts/cytology , Trophoblasts/metabolism
17.
J Proteomics ; 113: 194-205, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25284053

ABSTRACT

Endometriosis, ectopic growth of the uterine lining (endometrium), which affects 6-11% of reproductive age women, is associated with pelvic pain and infertility. We investigated the peritoneal fluid (PF), urine and omental fat (OF) proteomes of women with endometriosis vs. individuals with no surgically visualized endometriosis. All participants were enrolled in the NICHD-funded ENDO Study. A two-step proteomic study was performed. The first, a broad survey, employed a semi-quantitative gel LC-mass spectrometry (MS) workflow: SDS PAGE fractionation, trypsin digestion and LC-MS/MS. The results showed sample integrity but failed to detect any differences between women with and without endometriosis. The second step was a quantitative analysis of OF samples. We employed another sample set (n=30) from women ± disease and isobaric mass-tag (iTRAQ) chemistry to label peptides and 2D LC-MS/MS for protein identification and quantification. Three proteins-matrix metalloproteinase-9, neutrophil elastase, and FAM49B-were significantly lower in abundance in samples from women with endometriosis. Interestingly, neutrophil elastase and FAM49B levels were associated with higher levels of a subset of endocrine disrupting chemicals (EDCs) that were previously measured in the same samples. The results of these experiments showed the feasibility of associating endometriosis with changes in the OF protein repertoire and EDC levels. BIOLOGICAL SIGNIFICANCE: Endometriosis, pathological growth of the uterine lining, is associated with significant morbidities, including pain and infertility. However, the causes of this common condition are poorly understood. This study determined whether endometriosis was associated with changes in the protein composition of peritoneal fluid, urine and/or omental fat. A protein of unknown function (FAM49B) and two proteinases (metalloproteinase-9, neutrophil elastase) were down regulated in OF samples from women with versus without endometriosis. These findings suggested proteinase imbalances at sites that were distant from the endometriotic lesions. Additionally, FAM49B and neutrophil elastase levels were associated with higher levels of a subset of environmental chemicals that were quantified in the same samples, suggesting other possible associations. Thus, this work generated hypotheses that will be tested in further studies.


Subject(s)
Adipose Tissue/metabolism , Ascitic Fluid/metabolism , Contraceptives, Oral, Hormonal/administration & dosage , Endometriosis/urine , Omentum/metabolism , Proteome/metabolism , Adipose Tissue/pathology , Adult , Ascitic Fluid/pathology , Endometriosis/pathology , Female , Humans , Leukocyte Elastase/urine , Matrix Metalloproteinase 9/urine , Omentum/pathology
18.
Microb Cell Fact ; 13 Suppl 1: S5, 2014 Aug 29.
Article in English | MEDLINE | ID: mdl-25186244

ABSTRACT

The food industry is constantly striving to develop new products to fulfil the ever changing demands of consumers and the strict requirements of regulatory agencies. For foods based on microbial fermentation, this pushes the boundaries of microbial performance and requires the constant development of new starter cultures with novel properties. Since the use of ingredients in the food industry is tightly regulated and under close scrutiny by consumers, the use of recombinant DNA technology to improve microbial performance is currently not an option. As a result, the focus for improving strains for microbial fermentation is on classical strain improvement methods. Here we review the use of these techniques to improve the functionality of lactic acid bacteria starter cultures for application in industrial-scale food production. Methods will be described for improving the bacteriophage resistance of specific strains, improving their texture forming ability, increasing their tolerance to stress and modulating both the amount and identity of acids produced during fermentation. In addition, approaches to eliminating undesirable properties will be described. Techniques include random mutagenesis, directed evolution and dominant selection schemes.


Subject(s)
Food Microbiology , Genetic Engineering , Lactobacillus/genetics , Bacteriophages/genetics , Bacteriophages/physiology , Carbohydrate Metabolism , Citric Acid/metabolism , Drug Resistance, Bacterial , Lactobacillus/metabolism , Lactobacillus/virology , Polysaccharides, Bacterial/metabolism
20.
Ann N Y Acad Sci ; 1309: 1-18, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24571253

ABSTRACT

Commercial probiotic strains for food or supplement use can be altered in different ways for a variety of purposes. Production conditions for the strain or final product may be changed to address probiotic yield, functionality, or stability. Final food products may be modified to improve flavor and other sensory properties, provide new product formats, or respond to market opportunities. Such changes can alter the expression of physiological traits owing to the live nature of probiotics. In addition, genetic approaches may be used to improve strain attributes. This review explores whether genetic or phenotypic changes, by accident or design, might affect the efficacy or safety of commercial probiotics. We highlight key issues important to determining the need to re-confirm efficacy or safety after strain improvement, process optimization, or product formulation changes. Research pinpointing the mechanisms of action for probiotic function and the development of assays to measure them are greatly needed to better understand if such changes have a substantive impact on probiotic efficacy.


Subject(s)
Probiotics , Genetic Variation , Humans , Patient Safety , Probiotics/adverse effects , Probiotics/standards , Probiotics/therapeutic use , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...