Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Scand J Work Environ Health ; 50(3): 135-141, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38483328

ABSTRACT

In this discussion paper, we describe the history of the science and societal action resulting in the mitigation of neurotoxic disorders from exposure to organic solvents at the workplaces in Sweden. When alkyd paints were introduced in large scale in construction painting in the 1960s and 1970s, Scandinavian unions voiced increasing concern as members reported symptoms like headache and vertigo, supported by participatory studies and case studies. Although acute and chronic neurotoxic effects were established for some specific solvents such as carbon disulphide, this was not the case for those used in the new paints. Union advocacy promoted formal epidemiological studies, providing increasing evidence for chronic neurotoxicity at levels far below current occupational exposure levels. The results were widely disseminated and accepted and led to concerted action with preventive measures, most importantly substitution of the organic solvents in paints for indoor use, but also drastic reductions in occupational exposure limits. The findings also resulted in funding of further research on solvent toxicity and the establishment of expert groups to advice authorities on occupational standards for exposure to chemicals. The substitution strategy was subsequently adopted in many other countries and occupational exposure limits were lowered, although several years or even decades later. While the societal context in Sweden was unique in many ways, we conclude that there are lessons to be learned from this preventive success when addressing current challenges.


Subject(s)
Occupational Exposure , Humans , Solvents/toxicity , Sweden
2.
Microorganisms ; 12(2)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38399798

ABSTRACT

We previously reported that indoor odorous chloroanisoles (CAs) are still being emitted due to microbial methylation of hazardous chlorophenols (CPs) present in legacy wood preservatives. Meanwhile, Swedish researchers reported that this malodor, described since the early 1970s, is caused by hazardous mold. Here, we examined to what extent CP-treated wood contains mold and if mold correlates with perceived odor. We found no studies in PubMed or Web of Science addressing this question. Further, we investigated two schools built in the 1960s with odor originating from crawlspaces. No visible mold was evident in the crawlspaces or on the surfaces of treated wood samples. Using a microscope, varying amounts of mold growth were detected on the samples, all containing both CP(s) and CA(s). Some samples smelled, and the odor correlated with the amount of mold growth. We conclude that superficial microscopic mold on treated wood suffices produced the odor. Further, we argue that CPs rather than mold could explain the health effects reported in epidemiological studies that use mold odor as an indicator of hazardous exposure.

3.
Respir Res ; 25(1): 49, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245732

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) has the highest increased risk due to household air pollution arising from biomass fuel burning. However, knowledge on COPD patho-mechanisms is mainly limited to tobacco smoke exposure. In this study, a repeated direct wood smoke (WS) exposure was performed using normal- (bro-ALI) and chronic bronchitis-like bronchial (bro-ALI-CB), and alveolar (alv-ALI) lung mucosa models at air-liquid interface (ALI) to assess broad toxicological end points. METHODS: The bro-ALI and bro-ALI-CB models were developed using human primary bronchial epithelial cells and the alv-ALI model was developed using a representative type-II pneumocyte cell line. The lung models were exposed to WS (10 min/exposure; 5-exposures over 3-days; n = 6-7 independent experiments). Sham exposed samples served as control. WS composition was analyzed following passive sampling. Cytotoxicity, total cellular reactive oxygen species (ROS) and stress responsive NFkB were assessed by flow cytometry. WS exposure induced changes in gene expression were evaluated by RNA-seq (p ≤ 0.01) followed by pathway enrichment analysis. Secreted levels of proinflammatory cytokines were assessed in the basal media. Non-parametric statistical analysis was performed. RESULTS: 147 unique compounds were annotated in WS of which 42 compounds have inhalation toxicity (9 very high). WS exposure resulted in significantly increased ROS in bro-ALI (11.2%) and bro-ALI-CB (25.7%) along with correspondingly increased NFkB levels (bro-ALI: 35.6%; bro-ALI-CB: 18.1%). A total of 1262 (817-up and 445-down), 329 (141-up and 188-down), and 102 (33-up and 69-down) genes were differentially regulated in the WS-exposed bro-ALI, bro-ALI-CB, and alv-ALI models respectively. The enriched pathways included the terms acute phase response, mitochondrial dysfunction, inflammation, oxidative stress, NFkB, ROS, xenobiotic metabolism of AHR, and chronic respiratory disorder. The enrichment of the 'cilium' related genes was predominant in the WS-exposed bro-ALI (180-up and 7-down). The pathways primary ciliary dyskinesia, ciliopathy, and ciliary movement were enriched in both WS-exposed bro-ALI and bro-ALI-CB. Interleukin-6 and tumor necrosis factor-α were reduced (p < 0.05) in WS-exposed bro-ALI and bro-ALI-CB. CONCLUSION: Findings of this study indicate differential response to WS-exposure in different lung regions and in chronic bronchitis, a condition commonly associated with COPD. Further, the data suggests ciliopathy as a candidate pathway in relation to WS-exposure.


Subject(s)
Bronchitis, Chronic , Ciliopathies , Pulmonary Disease, Chronic Obstructive , Humans , Bronchitis, Chronic/chemically induced , Bronchitis, Chronic/metabolism , Smoke/adverse effects , Wood/toxicity , Reactive Oxygen Species/metabolism , Lung/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Mucous Membrane , Tobacco Products
4.
Environ Int ; 180: 108166, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37708812

ABSTRACT

While highly contaminated drinking water (DW) is a major source of exposure to perfluoroalkyl acids (PFAAs), the contribution of low-level contaminated DW (i.e. < 10 ng/L of individual PFAAs) to PFAA body burdens has rarely been studied. To address this knowledge gap, we evaluated the association between concentrations of perflurooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorohexane sulfonic acid (PFHxS) and perfluorooctane sulfonic acid (PFOS), and their sum (∑4PFAAs) in DW and serum in Swedish adolescents using weighted least squares regression. We paired serum PFAA concentrations in adolescents (age 10-21 years, n = 790) from the dietary survey Riksmaten Adolescents 2016-17 (RMA) with mean PFAA concentrations in water samples collected in 2018 from waterworks (n = 45) supplying DW to the participant residential and school addresses. The median concentrations of individual PFAAs in DW were < 1 ng/L. Median concentrations of PFNA and PFHxS in serum were < 1 ng/g, while those of PFOA and PFOS were 1-2 ng/g. Significant positive associations between PFAA concentrations in DW and serum were found for all four PFAAs and ∑4PFAAs, with estimated serum/DW concentration ratios ranging from 210 (PFOA) to 670 (PFHxS), taking exposure from sources other than DW (background) into consideration. The mean concentrations of PFHxS and ∑4PFAA in DW that would likely cause substantially elevated serum concentrations above background variation were estimated to 0.9 ng/L and 2.4 ng/L, respectively. The European Food Safety Authority has determined a health concern concentration of 6.9 ng ∑4PFAAs/mL serum. This level was to a large degree exceeded by RMA participants with DW ∑4PFAA concentrations above the maximum limits implemented in Denmark (2 ng ∑4PFAAs/L) and Sweden (4 ng ∑4PFAAs/L) than by RMA participants with DW concentrations below the maximum limits. In conclusion, PFAA exposure from low-level contaminated DW must be considered in risk assessment for adolescents.

5.
Toxics ; 11(8)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37624172

ABSTRACT

Heated tobacco products (HTPs) are novel products that allow users to inhale nicotine by heating (350 °C) reconstituted tobacco rather than combustion (900 °C) as in conventional cigarettes. HTP sticks containing reconstituted tobacco come in various flavours such as menthol, citrus, etc., like electronic cigarette liquids. Thus, the composition of HTP aerosol will also vary according to the flavouring agents added. Overall, the content of toxic chemicals in HTP aerosol appears to be lower than in cigarette smoke. However, the concentrations of more than twenty harmful and potentially harmful constituents have been reported to be higher in HTP aerosol than in cigarette smoke. Further, several toxic compounds not detected in cigarette smoke are also reported in HTP aerosol. Thus, the risks of HTP use remain unknown. Most of the available data on the composition and health effects of mainstream HTP aerosol exposure are generated by the tobacco industry. Few independent studies have reported short-term pathophysiological effects of HTP use. Currently available HTP toxicity data are mainly on the pulmonary and cardiovascular systems. Moreover, there are no long-term toxicity data and, therefore, the claims of the tobacco industry regarding HTPs as a safer alternative to traditional combustible cigarettes are unsubstantiated. Furthermore, HTP aerosol contains the highly addictive substance nicotine, which is harmful to the adolescent brain, developing foetuses, pregnant women, and also adults. Hence, comprehensive studies addressing the safety profiling related to long-term HTP use are warranted. With this background, the following review summarizes the current state of knowledge on HTP toxicity on four broad lines: composition of mainstream HTP aerosol compared to traditional combustible cigarette smoke, biomarkers of HTP exposure, health effects of HTP exposure, and the harm reduction aspect.

6.
Environ Res ; 219: 115024, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36535390

ABSTRACT

Contaminated drinking water (DW) is a major source of exposure to per- and polyfluoroalkyl substances (PFAS) at locations around PFAS production/use facilities and military airports. This study aimed to investigate quantitative relationships between concentrations in DW and serum of nine perfluoroalkyl acids (PFAAs) in Swedish adult populations living near contamination hotspots. Short-chained (PFPeA, PFHxA, PFHpA, and PFBS) and long-chained PFAAs (PFOA, PFNA, PFDA, PFHxS and PFOS) were measured in DW and serum. We matched DW and serum concentrations for a total of 398 subjects living or working in areas receiving contaminated DW and in one non-contaminated area. Thereafter, linear regression analysis with and without adjustments for co-variates was conducted. This enabled to derive (i) serum concentrations at background exposure (CB) from sources other than local DW exposure (i.e. food, dust and textiles) at 0 ng/L DW concentration, (ii) population-mean PFAA serum:water ratios (SWR) and (iii) PFAA concentrations in DW causing observable elevated serum PFAA concentrations above background variability. Median concentrations of the sum of nine PFAAs ranged between 2.8 and 1790 ng/L in DW and between 7.6 and 96.9 ng/mL in serum. DW concentration was the strongest predictor, resulting in similar unadjusted and adjusted regression coefficients. Mean CB ranged from <0.1 (PFPeA, PFHpA, PFBS) to 5.1 ng/mL (PFOS). Serum concentrations increased significantly with increasing DW concentrations for all PFAAs except for PFPeA with SWRs ranging from <10 (PFHxA, PFHpA and PFBS) to 111 (PFHxS). Observed elevated serum concentrations above background variability were reached at DW concentrations between 24 (PFOA) and 357 ng/L (PFHxA). The unadjusted linear regression predictions agreed well with serum concentrations previously reported in various populations exposed to low and high DW levels of PFOA, PFHxS and PFOS. The quantitative relationships derived herein should be helpful to translate PFAA concentrations in DW to concentrations in serum at the population level.


Subject(s)
Alkanesulfonic Acids , Drinking Water , Fluorocarbons , Water Pollutants, Chemical , Humans , Adult , Drinking Water/analysis , Sweden , Alkanesulfonic Acids/analysis , Caprylates , Water Pollutants, Chemical/analysis
7.
J Appl Toxicol ; 43(1): 186-194, 2023 01.
Article in English | MEDLINE | ID: mdl-36017531

ABSTRACT

Uncertainty factors (UFs) are used to account for uncertainties and variability when setting exposure limits or guidance values. Starting from a proposal of a single UF of 100 to extrapolate from an animal NOAEL to a human acceptable exposure, the aspects of uncertainty and number of UFs have diversified and today there are several risk assessment guidelines that contain schemes of default UFs of varying complexity. In the present work, we scoped the scientific literature on default UFs to map developments regarding recommendations and evaluations of these. We identified 91 publications making recommendations for one or several UFs and 55 publications evaluating UFs without making explicit recommendations about numerical values; these were published between 1954 and 2021. The 2000s was the decade with the largest number of publications, interspecies differences and intraspecies variability being the most frequent topics. The academic sector has been the most active (76 out of 146 publications). Authors from the private sector more often presented UF recommendations, but differences between sectors regarding size of recommendations were not statistically significant. The empirical underpinning of the reviewed recommendations ranges from four to 462 chemicals, that is, relatively low numbers compared with the range of chemicals these default UFs are expected to cover. The recommended UFs have remained remarkably constant, with merely a slight decrease over time. Although chemical specific UFs are preferable, the widespread use of default UFs warrants further attention regarding their empirical and normative basis.


Subject(s)
Health , Uncertainty , Animals , Humans , No-Observed-Adverse-Effect Level , Risk Assessment , Health Status
8.
Article in English | MEDLINE | ID: mdl-36497612

ABSTRACT

Crowding in dwellings is an important public health issue. We hypothesize that overcrowding may cause indirect health effects by adversely affecting the dwelling itself, for example, by increasing dampness leading to mold. We therefore performed a systematic search and a scoping review on overcrowding leading to dwelling condition characteristics of relevance for health. A literature search was performed using the PubMed and Scopus databases up to 5 March 2021. The search yielded 100 records with relevant information. We found that overcrowding is defined in numerous ways and often address "socially deprived" populations. Six studies report associations of overcrowding with at least one dwelling condition characteristic, namely lead, cadmium, microorganism distribution, dust mite and cockroach allergens in dust, cockroach infestation, peeling paint, and mold. One of the studies reports associations between several characteristics, e.g., association of mold with cleanliness and rodent infestation, and points out the common use of pesticides. Additional characteristics were extracted from the remaining 94 records, without data on statistical associations with overcrowding. Our review suggests that multiple potentially hazardous dwelling condition characteristics often coincide in overcrowded dwellings. The epidemiological attribution of health effects to any characteristic is therefore difficult. Causal relationships are even more difficult to establish, as overcrowding is also associated with a range of social and other circumstances that may affect health. The complexity should be considered by scientists and practitioners dealing with overcrowding in dwellings.


Subject(s)
Cockroaches , Crowding , Animals , Dust , Allergens , Paint , Fungi
9.
Sci Rep ; 12(1): 16396, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36180488

ABSTRACT

Heated tobacco products (HTP) are novel nicotine delivery products with limited toxicological data. HTP uses heating instead of combustion to generate aerosol (HTP-smoke). Physiologically relevant human bronchial and alveolar lung mucosa models developed at air-liquid interface were exposed to HTP-smoke to assess broad toxicological response (n = 6-7; ISO puffing regimen; compared to sham; non-parametric statistical analysis; significance: p < 0.05). Elevated levels of total cellular reactive oxygen species, stress responsive nuclear factor kappa-B, and DNA damage markers [8-hydroxy-2'-deoxyguanosine, phosphorylated histone H2AX, cleaved poly-(ADP-Ribose) polymerase] were detected in HTP-smoke exposed bronchial and/or alveolar models. RNA sequencing detected differential regulation of 724 genes in the bronchial- and 121 genes in the alveolar model following HTP-smoke exposure (cut off: p ≤ 0.01; fold change: ≥ 2). Common enriched pathways included estrogen biosynthesis, ferroptosis, superoxide radical degradation, xenobiotics, and α-tocopherol degradation. Secreted levels of interleukin (IL)1ꞵ and IL8 increased in the bronchial model whereas in the alveolar model, interferon-γ and IL4 increased and IL13 decreased following HTP-smoke exposure. Increased lipid peroxidation was detected in HTP-smoke exposed bronchial and alveolar models which was inhibited by ferrostatin-1. The findings form a basis to perform independent risk assessment studies on different flavours of HTP using different puffing topography and corresponding chemical characterization.


Subject(s)
Tobacco Products , 8-Hydroxy-2'-Deoxyguanosine , Adenosine Diphosphate Ribose , Aerosols/analysis , Estrogens , Histones , Humans , Interferon-gamma , Interleukin-13 , Interleukin-4 , Interleukin-8 , Mucous Membrane/chemistry , Nicotine/analysis , Reactive Oxygen Species , Smoke/analysis , Superoxides/analysis , Nicotiana , Tobacco Products/analysis , alpha-Tocopherol
11.
Viruses ; 13(12)2021 12 17.
Article in English | MEDLINE | ID: mdl-34960806

ABSTRACT

BACKGROUND: The SARS-CoV-2 spike protein mediates attachment of the virus to the host cell receptor and fusion between the virus and the cell membrane. The S1 subunit of the spike glycoprotein (S1 protein) contains the angiotensin converting enzyme 2 (ACE2) receptor binding domain. The SARS-CoV-2 variants of concern contain mutations in the S1 subunit. The spike protein is the primary target of neutralizing antibodies generated following infection, and constitutes the viral component of mRNA-based COVID-19 vaccines. METHODS: Therefore, in this work we assessed the effect of exposure (24 h) to 10 nM SARS-CoV-2 recombinant S1 protein on physiologically relevant human bronchial (bro) and alveolar (alv) lung mucosa models cultured at air-liquid interface (ALI) (n = 6 per exposure condition). Corresponding sham exposed samples served as a control. The bro-ALI model was developed using primary bronchial epithelial cells and the alv-ALI model using representative type II pneumocytes (NCI-H441). RESULTS: Exposure to S1 protein induced the surface expression of ACE2, toll like receptor (TLR) 2, and TLR4 in both bro-ALI and alv-ALI models. Transcript expression analysis identified 117 (bro-ALI) and 97 (alv-ALI) differentially regulated genes (p ≤ 0.01). Pathway analysis revealed enrichment of canonical pathways such as interferon (IFN) signaling, influenza, coronavirus, and anti-viral response in the bro-ALI. Secreted levels of interleukin (IL) 4 and IL12 were significantly (p < 0.05) increased, whereas IL6 decreased in the bro-ALI. In the case of alv-ALI, enriched terms involving p53, APRIL (a proliferation-inducing ligand) tight junction, integrin kinase, and IL1 signaling were identified. These terms are associated with lung fibrosis. Further, significantly (p < 0.05) increased levels of secreted pro-inflammatory cytokines IFNγ, IL1ꞵ, IL2, IL4, IL6, IL8, IL10, IL13, and tumor necrosis factor alpha were detected in alv-ALI, whereas IL12 was decreased. Altered levels of these cytokines are also associated with lung fibrotic response. CONCLUSIONS: In conclusion, we observed a typical anti-viral response in the bronchial model and a pro-fibrotic response in the alveolar model. The bro-ALI and alv-ALI models may serve as an easy and robust platform for assessing the pathogenicity of SARS-CoV-2 variants of concern at different lung regions.


Subject(s)
Lung/metabolism , Respiratory Mucosa/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Bronchi/metabolism , Cytokines/metabolism , Gene Expression Profiling , Humans , Models, Biological , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism
12.
Pharmaceutics ; 13(7)2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34371795

ABSTRACT

The authors wish to make the following corrections to this paper [...].

13.
Regul Toxicol Pharmacol ; 123: 104929, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33872741

ABSTRACT

Our aim was to evaluate policies and procedures for management of conflict of interest (CoI) and other sources of bias, implemented in Occupational Exposure Limit (OEL) expert groups. First, we compiled procedural criteria applicable to OEL-setting, based on literature on CoI and systematic reviews. Second, we identified 58 global OEL-sources and sought the underlying expert groups and operating procedures. We identified eleven active groups, of which five have documented CoI policies. In all five, CoI management is based on declarations of interests (DoIs) and removal of experts from decisions in which they have an interest. Notable differences include publication of DoIs (three of five groups), limitation of DoI to current interests (two groups), quantitative limits for financial interests (none specified to ≥€10,000 per interest), control procedures for undisclosed CoI (one group), and procedures in case of discovery of undisclosed CoI (three groups). Methods to evaluate study quality are described by three groups, while reproducible and comprehensive strategies to identify and select data receive less attention. We conclude that procedures to manage CoI and bias are not broadly implemented, or at least not openly and transparently communicated. This lack of visible procedures is remarkable, considering OEL's impact on health and economy.


Subject(s)
Conflict of Interest , Occupational Exposure , Bias , Conflict of Interest/economics , Humans
14.
Environ Health Perspect ; 129(1): 17002, 2021 01.
Article in English | MEDLINE | ID: mdl-33439052

ABSTRACT

BACKGROUND: The filaggrin protein is important for skin barrier structure and function. Loss-of-function (null) mutations in the filaggrin gene FLG may increase dermal absorption of chemicals. OBJECTIVE: The objective of the study was to clarify if dermal absorption of chemicals differs depending on FLG genotype. METHOD: We performed a quantitative real-time polymerase chain reaction (qPCR)-based genetic screen for loss-of-function mutations (FLG null) in 432 volunteers from the general population in southern Sweden and identified 28 FLG null carriers. In a dermal exposure experiment, we exposed 23 FLG null and 31 wild-type (wt) carriers to three organic compounds common in the environment: the polycyclic aromatic hydrocarbon pyrene, the pesticide pyrimethanil, and the ultraviolet-light absorber oxybenzone. We then used liquid-chromatography mass-spectrometry to measure the concentrations of these chemicals or their metabolites in the subjects' urine over 48 h following exposure. Furthermore, we used long-range PCR to measure FLG repeat copy number variants (CNV), and we performed population toxicokinetic analysis. RESULTS: Lag times for the uptake and dermal absorption rate of the chemicals differed significantly between FLG null and wt carriers with low (20-22 repeats) and high FLG CNV (23-24 repeats). We found a dose-dependent effect on chemical absorption with increasing lag times by increasing CNV for both pyrimethanil and pyrene, and decreasing area under the urinary excretion rate curve (AUC(0-40h)) with increasing CNV for pyrimethanil. FLG null carriers excreted 18% and 110% more metabolite (estimated by AUC(0-40h)) for pyrimethanil than wt carriers with low and high CNV, respectively. CONCLUSION: We conclude that FLG genotype influences the dermal absorption of some common chemicals. Overall, FLG null carriers were the most susceptible, with the shortest lag time and highest rate constants for skin absorption, and higher fractions of the applied dose excreted. Furthermore, our results indicate that low FLG CNV resulted in increased dermal absorption of chemicals. https://doi.org/10.1289/EHP7310.


Subject(s)
Environmental Pollutants , Intermediate Filament Proteins , Skin Absorption , Benzophenones/metabolism , Benzophenones/urine , Chromatography, Liquid , DNA Copy Number Variations/genetics , Environmental Pollutants/metabolism , Environmental Pollutants/urine , Female , Filaggrin Proteins , Genotype , Humans , Intermediate Filament Proteins/genetics , Male , Mass Spectrometry , Mutation , Pyrenes/metabolism , Pyrenes/urine , Pyrimidines/metabolism , Pyrimidines/urine , Skin Absorption/genetics , Sweden
15.
Sci Rep ; 10(1): 20460, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33235237

ABSTRACT

Limited toxicity data on electronic cigarette (ECIG) impede evidence-based policy recommendations. We compared two popular mixed fruit flavored ECIG-liquids with and without nicotine aerosolized at 40 W (E-smoke) with respect to particle number concentrations, chemical composition, and response on physiologically relevant human bronchial and alveolar lung mucosa models cultured at air-liquid interface. E-smoke was characterized by significantly increased particle number concentrations with increased wattage (25, 40, and 55 W) and nicotine presence. The chemical composition of E-smoke differed across the two tested flavors in terms of cytotoxic compounds including p-benzoquinone, nicotyrine, and flavoring agents (for example vanillin, ethyl vanillin). Significant differences in the expression of markers for pro-inflammation, oxidative stress, tissue injury/repair, alarm anti-protease, anti-microbial defense, epithelial barrier function, and epigenetic modification were observed between the flavors, nicotine content, and/ or lung models (bronchial or alveolar). Our findings indicate that ECIG toxicity is influenced by combination of multiple factors including flavor, nicotine content, vaping regime, and the region of respiratory tree (bronchial or alveolar). Toxic chemicals and flavoring agents detected in high concentrations in the E-smoke of each flavor warrant independent evaluation for their specific role in imparting toxicity. Therefore, multi-disciplinary approaches are warranted for comprehensive safety profiling of ECIG.


Subject(s)
Bronchi/cytology , Genetic Markers/drug effects , Nicotine/adverse effects , Pulmonary Alveoli/cytology , Vaping/adverse effects , Bronchi/chemistry , Bronchi/drug effects , Cell Culture Techniques , Cell Line , Electronic Nicotine Delivery Systems , Flavoring Agents/adverse effects , Flavoring Agents/chemistry , Gene Expression Regulation/drug effects , Humans , Models, Biological , Particle Size , Pulmonary Alveoli/chemistry , Pulmonary Alveoli/drug effects
16.
Biomed Res Int ; 2020: 3259723, 2020.
Article in English | MEDLINE | ID: mdl-33110918

ABSTRACT

BACKGROUND: Acrolein is a major component of environmental pollutants, cigarette smoke, and is also formed by heating cooking oil. We evaluated the interstrain variability of response to subchronic inhalation exposure to acrolein among inbred mouse strains for inflammation, oxidative stress, and tissue injury responses. Furthermore, we studied the response to acrolein vapor in the lung mucosa model using human primary bronchial epithelial cells (PBEC) cultured at an air-liquid interface (ALI) to evaluate the findings of mouse studies. METHODS: Female 129S1/SvlmJ, A/J, BALB/cByJ, C3H/HeJ, C57BL/6J, DBA/2J, and FVB/NJ mice were exposed to 1 part per million (ppm) acrolein or filtered air for 11 weeks. Total cell counts and protein concentrations were measured in bronchoalveolar lavage (BAL) fluid to assess airway inflammation and membrane integrity. PBEC-ALI models were exposed to acrolein vapor (0.1 and 0.2 ppm) for 30 minutes. Gene expression of proinflammatory, oxidative stress, and tissue injury-repair markers was assessed (cut off: ≥2 folds; p < 0.05) in the lung models. RESULTS: Total BAL cell numbers and protein concentrations remained unchanged following acrolein exposure in all mouse strains. BALB/cByJ, C57BL/6J, and 129S1/SvlmJ strains were the most affected with an increased expression of proinflammatory, oxidative stress, and/or tissue injury markers. DBA/2J, C3H/HeJ, A/J, and FVB/NJ were affected to a lesser extent. Both matrix metalloproteinase 9 (Mmp9) and tissue inhibitor of metalloproteinase 1 (Timp1) were upregulated in the strains DBA/2J, C3H/HeJ, and FVB/NJ indicating altered protease/antiprotease balance. Upregulation of lung interleukin- (IL-) 17b transcript in the susceptible strains led us to investigate the IL-17 pathway genes in the PBEC-ALI model. Acrolein exposure resulted in an increased expression of IL-17A, C, and D; IL-1B; IL-22; and RAR-related orphan receptor A in the PBEC-ALI model. CONCLUSION: The interstrain differences in response to subchronic acrolein exposure in mouse suggest a genetic predisposition. Altered expression of IL-17 pathway genes following acrolein exposure in the PBEC-ALI models indicates that it has a central role in chemical irritant toxicity. The findings also indicate that genetically determined differences in IL-17 signaling pathway genes in the different mouse strains may explain their susceptibility to different chemical irritants.


Subject(s)
Acrolein/pharmacology , Bronchi/diagnostic imaging , Epithelial Cells/drug effects , Lung/drug effects , Animals , Bronchi/metabolism , Bronchoalveolar Lavage Fluid , Epithelial Cells/metabolism , Female , Humans , Inflammation/metabolism , Interleukin-17/metabolism , Lung/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Oxidative Stress/drug effects , Signal Transduction/drug effects
17.
Pharmaceutics ; 12(10)2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33092229

ABSTRACT

(1) Background: Inhalant abuse and misuse are still widespread problems. 1,1-Difluoroethane abuse is reported to be potentially fatal and to cause acute and chronic adverse health effects. Lab testing for difluoroethane is seldom done, partly because the maximum detection time (MDT) is unknown. We sought to reliably estimate the MDT of difluoroethane in blood after inhalation abuse; (2) Methods: MDT were estimated for the adult male American population using a physiologically based pharmacokinetic (PBPK) model and abuse patterns detailed by two individuals. Based on sensitivity analyses, variability in huffing pattern and body mass index was introduced in the model by Monte Carlo simulation; (3) Results: With a detection limit of 0.14 mg/L, the median MDT was estimated to be 10.5 h (5th-95th percentile 7.8-12.8 h) after the 2-h abuse scenario and 13.5 h (10.5-15.8 h) after the 6-h scenario. The ranges reflect variability in body mass index and hence amount of body fat; (4) Conclusions: Our simulations suggest that the MDT of difluoroethane in blood after abuse ranges from 7.8 to 15.8 h. Although shorter compared to many other drugs, these MDT are sufficient to allow for testing several hours after suspected intoxication in a patient.

18.
Int J Hyg Environ Health ; 230: 113626, 2020 09.
Article in English | MEDLINE | ID: mdl-32950016

ABSTRACT

Numerous shipping containers arrive with high levels of hazardous volatile chemicals in the interior air. This may constitute a health risk during inspection and unstuffing. The problem remains largely unaddressed due to ignorance, lack of suitable field instruments for chemical identification, and lack of easy to use, effective ventilation methods. Here, we present a novel ventilation approach based on extraction of air from the closed container via the existing top corner ventilators. A suction plate was developed to fit tightly over the corner ventilator and connected with a flexible hose to an extraction fan. Air flow rates and vacuum under the plate were measured in the lab with five different types of extraction fans. The vacuum produced under the suction plate held it securely in place. Washout of air contaminants under different configurations and ventilation scenarios was studied in an experimental 20-ft container stuffed with acetone emitting cardboard boxes and in the field with containers stuffed with commercial goods. Volatiles in container air were continuously recorded with logging photoionization detectors in various positions before, during and after ventilation. A maximum air flow through the ventilator of 186 m3/h was achieved. At 100 m3/h, the initial acetone levels were reduced to 11% and 4.9% in the tightly stuffed and to 6.0% and 3.1% in the loosely stuffed (pallets) experimental container after 1 h and 4 h, respectively, as measured inside the closed door (mean values). As expected, the washout was somewhat slower in nine 40-ft field containers and reached 22% and 11%, respectively. In both experimental and field containers the concentration rose quickly when ventilation ceased. In conclusion, the new ventilation method allows for convenient, safe and efficient ventilation of risk containers. The container should be continuously ventilated until it is opened, or rapid re-accumulation of volatiles will occur.


Subject(s)
Ships , Ventilation , Hazardous Substances
19.
Toxics ; 8(3)2020 Sep 05.
Article in English | MEDLINE | ID: mdl-32899560

ABSTRACT

This report summarizes the outcome of a workshop held in Mysuru, India in January 2020 addressing the adverse health effects of exposure to biomass smoke (BMS). The aim of the workshop was to identify uncertainties and gaps in knowledge and possible methods to address them in the Mysuru study on Determinants of Health in Rural Adults (MUDHRA) cohort. Specific aims were to discuss the possibility to improve and introduce new screening methods for exposure and effect, logistic limitations and other potential obstacles, and plausible strategies to overcome these in future studies. Field visits were included in the workshop prior to discussing these issues. The workshop concluded that multi-disciplinary approaches to perform: (a) indoor and personalized exposure assessment; (b) clinical and epidemiological field studies among children, adolescents, and adults; (c) controlled exposure experiments using physiologically relevant in vitro and in vivo models to understand molecular patho-mechanisms are warranted to dissect BMS-induced adverse health effects. It was perceived that assessment of dietary exposure (like phytochemical index) may serve as an important indicator for understanding potential protective mechanisms. Well trained field teams and close collaboration with the participating hospital were identified as the key requirements to successfully carry out the study objectives.

20.
Int J Hyg Environ Health ; 226: 113488, 2020 05.
Article in English | MEDLINE | ID: mdl-32088597

ABSTRACT

Asthma is a heterogeneous inflammatory disease characterized by increased airway hyper-responsiveness to external stimuli such as irritants. One may speculate that asthmatics are more sensitive to irritants in the air than healthy subjects, i.e. react at lower concentrations. We reviewed the scientific support for this speculation and investigated to what extent asthma is considered when setting exposure limits and guidance values. We found that the experimental studies comparing healthy and asthmatic subjects are often inconclusive. Still, the available studies are underused, by expert committees and industry alike. Data for a few irritants suggest that asthmatics are up to three-fold more sensitive than the healthy. The most abundant data were found for sulfur dioxide. Here, a benchmark concentration analysis suggests a nine-fold difference in sensitivity. Based on these data a default assessment factor of 10 is suggested when setting exposure limits and guidance values for irritants.


Subject(s)
Air Pollutants/standards , Asthma , Irritants/standards , Air Pollutants/toxicity , Animals , Humans , Irritants/toxicity , Maximum Allowable Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...