Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3837, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714665

ABSTRACT

Although metabolic reprogramming within tumor cells and tumor microenvironment (TME) is well described in breast cancer, little is known about how the interplay of immune state and cancer metabolism evolves during treatment. Here, we characterize the immunometabolic profiles of tumor tissue samples longitudinally collected from individuals with breast cancer before, during and after neoadjuvant chemotherapy (NAC) using proteomics, genomics and histopathology. We show that the pre-, on-treatment and dynamic changes of the immune state, tumor metabolic proteins and tumor cell gene expression profiling-based metabolic phenotype are associated with treatment response. Single-cell/nucleus RNA sequencing revealed distinct tumor and immune cell states in metabolism between cold and hot tumors. Potential drivers of NAC based on above analyses were validated in vitro. In summary, the study shows that the interaction of tumor-intrinsic metabolic states and TME is associated with treatment outcome, supporting the concept of targeting tumor metabolism for immunoregulation.


Subject(s)
Breast Neoplasms , Neoadjuvant Therapy , Tumor Microenvironment , Humans , Breast Neoplasms/immunology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Tumor Microenvironment/immunology , Gene Expression Regulation, Neoplastic , Gene Expression Profiling , Longitudinal Studies , Middle Aged , Proteomics , Adult , Cell Line, Tumor , Single-Cell Analysis
2.
Blood ; 143(19): 1953-1964, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38237141

ABSTRACT

ABSTRACT: Sterile alpha motif and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate triphosphohydrolase with ara-CTPase activity that confers cytarabine (ara-C) resistance in several hematological malignancies. Targeting SAMHD1's ara-CTPase activity has recently been demonstrated to enhance ara-C efficacy in acute myeloid leukemia. Here, we identify the transcription factor SRY-related HMG-box containing protein 11 (SOX11) as a novel direct binding partner and first known endogenous inhibitor of SAMHD1. SOX11 is aberrantly expressed not only in mantle cell lymphoma (MCL), but also in some Burkitt lymphomas. Coimmunoprecipitation of SOX11 followed by mass spectrometry in MCL cell lines identified SAMHD1 as the top SOX11 interaction partner, which was validated by proximity ligation assay. In vitro, SAMHD1 bound to the HMG box of SOX11 with low-micromolar affinity. In situ crosslinking studies further indicated that SOX11-SAMHD1 binding resulted in a reduced tetramerization of SAMHD1. Functionally, expression of SOX11 inhibited SAMHD1 ara-CTPase activity in a dose-dependent manner resulting in ara-C sensitization in cell lines and in a SOX11-inducible mouse model of MCL. In SOX11-negative MCL, SOX11-mediated ara-CTPase inhibition could be mimicked by adding the recently identified SAMHD1 inhibitor hydroxyurea. Taken together, our results identify SOX11 as a novel SAMHD1 interaction partner and its first known endogenous inhibitor with potentially important implications for clinical therapy stratification.


Subject(s)
Lymphoma, Mantle-Cell , SAM Domain and HD Domain-Containing Protein 1 , SOXC Transcription Factors , Lymphoma, Mantle-Cell/metabolism , Lymphoma, Mantle-Cell/pathology , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/genetics , Humans , SAM Domain and HD Domain-Containing Protein 1/metabolism , SAM Domain and HD Domain-Containing Protein 1/genetics , Animals , Mice , SOXC Transcription Factors/metabolism , SOXC Transcription Factors/genetics , Protein Binding , Cell Line, Tumor , Cytarabine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL