Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
J Biochem ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564227

ABSTRACT

Senescent cells accumulate in various organs with aging, and its accumulation induces chronic inflammation and age-related physiological dysfunctions. Several remodeling of intracellular environments has been identified in senescent cells, including enlargement of cell / nuclear size and intracellular acidification. Although these alterations of intracellular environments were reported to be involved in unique characteristics of senescent cells, the contribution of intracellular acidification to senescence-associated cellular phenotypes is poorly understood. Here, we identified that upregulation of TXNIP and its paralog ARRDC4 as a hallmark of intracellular acidification in addition to KGA-type GLS1. These genes were also upregulated in response to senescence-associated intracellular acidification. Neutralization of the intracellular acidic environment ameliorated not only senescence-related upregulation of TXNIP, ARRDC4, and KGA, but also inflammation-related genes, possibly through suppression of PDK-dependent anaerobic glycolysis. Furthermore, we found that expression of the intracellular acidification-induced genes, TXNIP and ARRDC4, correlated with inflammatory gene expression in heterogeneous senescent cell population in vitro and even in vivo, implying that the contribution of intracellular pH to senescence-associated cellular features, such as SASP.

2.
Mol Metab ; 84: 101943, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657734

ABSTRACT

OBJECTIVES: Adipose tissue is an endocrine and energy storage organ composed of several different cell types, including mature adipocytes, stromal cells, endothelial cells, and a variety of immune cells. Adipose tissue aging contributes to the pathogenesis of metabolic dysfunction and is likely induced by crosstalk between adipose progenitor cells (APCs) and immune cells, but the underlying molecular mechanisms remain largely unknown. In this study, we revealed the biological role of p16high senescent APCs, and investigated the crosstalk between each cell type in the aged white adipose tissue. METHODS: We performed the single-cell RNA sequencing (scRNA-seq) analysis on the p16high adipose cells sorted from aged p16-CreERT2/Rosa26-LSL-tdTomato mice. We also performed the time serial analysis on the age-dependent bulk RNA-seq datasets of human and mouse white adipose tissues to infer the transcriptome alteration of adipogenic potential within aging. RESULTS: We show that M2 macrophage-derived TGF-ß induces APCs senescence which impairs adipogenesis in vivo. p16high senescent APCs increase with age and show loss of adipogenic potential. The ligand-receptor interaction analysis reveals that M2 macrophages are the donors for TGF-ß and the senescent APCs are the recipients. Indeed, treatment of APCs with TGF-ß1 induces senescent phenotypes through mitochondrial ROS-mediated DNA damage in vitro. TGF-ß1 injection into gonadal white adipose tissue (gWAT) suppresses adipogenic potential and induces fibrotic genes as well as p16 in APCs. A gWAT atrophy is observed in cancer cachexia by APCs senescence, whose induction appeared to be independent of TGF-ß induction. CONCLUSIONS: Our results suggest that M2 macrophage-derived TGF-ß induces age-related lipodystrophy by APCs senescence. The TGF-ß treatment induced DNA damage, mitochondrial ROS, and finally cellular senescence in APCs.


Subject(s)
Adipogenesis , Cellular Senescence , Macrophages , Stem Cells , Transforming Growth Factor beta , Animals , Mice , Macrophages/metabolism , Transforming Growth Factor beta/metabolism , Stem Cells/metabolism , Humans , Mice, Inbred C57BL , Aging/metabolism , Male , Adipocytes/metabolism , Adipose Tissue, White/metabolism
3.
Cancer Res Commun ; 4(3): 849-860, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38466568

ABSTRACT

Accumulating evidence indicates that various oncogenic mutations interfere with normal myeloid differentiation of leukemogenic cells during the early process of acute myeloid leukemia (AML) development. Differentiation therapy is a therapeutic strategy capable of terminating leukemic expansion by reactivating the differentiation potential; however, the plasticity and instability of leukemia cells counteract the establishment of treatments aimed at irreversibly inducing and maintaining their differentiation states. On the basis of our previous observation that autophagy inhibitor treatment induces the accumulation of cytosolic DNA and activation of cytosolic DNA-sensor signaling selectively in leukemia cells, we herein examined the synergistic effect of cytosolic DNA-sensor signaling activation with conventional differentiation therapy on AML. The combined treatment succeeded in inducing irreversible differentiation in AML cell lines. Mechanistically, cytosolic DNA was sensed by absent in melanoma 2 (AIM2), a cytosolic DNA sensor. Activation of the AIM2 inflammasome resulted in the accumulation of p21 through the inhibition of its proteasomal degradation, thereby facilitating the myeloid differentiation. Importantly, the combined therapy dramatically reduced the total leukemia cell counts and proportion of blast cells in the spleens of AML mice. Collectively, these findings indicate that the autophagy inhibition-cytosolic DNA-sensor signaling axis can potentiate AML differentiation therapy. SIGNIFICANCE: Clinical effects on AML therapy are closely associated with reactivating the normal myeloid differentiation potential in leukemia cells. This study shows that autophagosome formation inhibitors activate the cytosolic DNA-sensor signaling, thereby augmenting conventional differentiation therapy to induce irreversible differentiation and cell growth arrest in several types of AML cell lines.


Subject(s)
Hematopoiesis , Leukemia, Myeloid, Acute , Animals , Mice , Cell Differentiation , Leukemia, Myeloid, Acute/drug therapy , DNA/pharmacology , Autophagy/genetics
4.
Nat Aging ; 4(3): 319-335, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38388781

ABSTRACT

Plasma membrane damage (PMD) occurs in all cell types due to environmental perturbation and cell-autonomous activities. However, cellular outcomes of PMD remain largely unknown except for recovery or death. In this study, using budding yeast and normal human fibroblasts, we found that cellular senescence-stable cell cycle arrest contributing to organismal aging-is the long-term outcome of PMD. Our genetic screening using budding yeast unexpectedly identified a close genetic association between PMD response and replicative lifespan regulations. Furthermore, PMD limits replicative lifespan in budding yeast; upregulation of membrane repair factors ESCRT-III (SNF7) and AAA-ATPase (VPS4) extends it. In normal human fibroblasts, PMD induces premature senescence via the Ca2+-p53 axis but not the major senescence pathway, DNA damage response pathway. Transient upregulation of ESCRT-III (CHMP4B) suppressed PMD-dependent senescence. Together with mRNA sequencing results, our study highlights an underappreciated but ubiquitous senescent cell subtype: PMD-dependent senescent cells.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Humans , Saccharomyces cerevisiae/genetics , Longevity , Tumor Suppressor Protein p53/genetics , Fibroblasts , Cell Membrane/metabolism , Cellular Senescence/genetics , Endosomal Sorting Complexes Required for Transport/genetics , Adenosine Triphosphatases/metabolism , Saccharomyces cerevisiae Proteins/metabolism
5.
Nat Aging ; 3(8): 1001-1019, 2023 08.
Article in English | MEDLINE | ID: mdl-37474791

ABSTRACT

Protein misfolding is a major factor of neurodegenerative diseases. Post-mitotic neurons are highly susceptible to protein aggregates that are not diluted by mitosis. Therefore, post-mitotic cells may have a specific protein quality control system. Here, we show that LONRF2 is a bona fide protein quality control ubiquitin ligase induced in post-mitotic senescent cells. Under unperturbed conditions, LONRF2 is predominantly expressed in neurons. LONRF2 binds and ubiquitylates abnormally structured TDP-43 and hnRNP M1 and artificially misfolded proteins. Lonrf2-/- mice exhibit age-dependent TDP-43-mediated motor neuron (MN) degeneration and cerebellar ataxia. Mouse induced pluripotent stem cell-derived MNs lacking LONRF2 showed reduced survival, shortening of neurites and accumulation of pTDP-43 and G3BP1 after long-term culture. The shortening of neurites in MNs from patients with amyotrophic lateral sclerosis is rescued by ectopic expression of LONRF2. Our findings reveal that LONRF2 is a protein quality control ligase whose loss may contribute to MN degeneration and motor deficits.


Subject(s)
Motor Neurons , Ubiquitin , Mice , Animals , Motor Neurons/metabolism , Ubiquitin/metabolism , Ligases/metabolism , DNA Helicases/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , RNA Helicases/metabolism , RNA Recognition Motif Proteins/metabolism , DNA-Binding Proteins/genetics
6.
Biochem Biophys Res Commun ; 673: 121-130, 2023 09 17.
Article in English | MEDLINE | ID: mdl-37385006

ABSTRACT

Cellular senescence is involved in the pathogenesis of various diseases, including acute kidney injury (AKI). AKI is defined as a sudden loss of kidney function. In severe AKI, irreversible loss of kidney cells can occur. Cellular senescence might contribute to this maladaptive tubular repair, though, its pathophysiological role in vivo is incompletely understood. In this study, we used p16-CreERT2-tdTomato mice in which cells with high p16 expression, a prototypical senescent marker, are labeled with tdTomato fluorescence. Then, we induced AKI by rhabdomyolysis and traced the cells with high p16 expression following AKI. We proved that the induction of senescence was observed predominantly in proximal tubular epithelial cells (PTECs) and occurred in a relatively acute phase within 1-3 days after AKI. These acute senescent PTECs were spontaneously eliminated by day 15. On the contrary, the generation of senescence in PTECs persisted during the chronic recovery phase. We also confirmed that the kidney function did not fully recover on day 15. These results suggest that the chronic generation of senescent PTECs might contribute to maladaptive recovery from AKI and lead to chronic kidney disease progression.


Subject(s)
Acute Kidney Injury , Renal Insufficiency, Chronic , Rhabdomyolysis , Mice , Animals , Acute Kidney Injury/pathology , Kidney/pathology , Renal Insufficiency, Chronic/pathology , Cellular Senescence/physiology , Rhabdomyolysis/complications , Rhabdomyolysis/metabolism , Rhabdomyolysis/pathology
7.
Toxicol Appl Pharmacol ; 468: 116531, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37088304

ABSTRACT

Cancer survivors who received chemotherapy, such as the anthracycline doxorubicin (DOX), have an increased risk of developing complications later in life, including the development of chronic metabolic diseases. Although the etiology of this increased risk for late metabolic complications in cancer survivors is poorly understood, a causal role of therapy-induced senescent cells has been suggested. To study the role of cellular senescence in chemotherapy-induced metabolic complications, young adult female low-density lipoprotein receptor-deficient (Ldlr-/-)-p16-3MR mice, in which p16Ink4a-positive (p16Ink4a+) senescent cells can be genetically eliminated, were treated with four weekly injections of DOX (2.5 mg/kg) followed by a high-fat high-cholesterol diet for 12 weeks. While DOX treatment induced known short-term effects, such as reduction in body weight, gonadal fat mass, and adipose tissue inflammation, it was not associated with significant long-term effects on glucose homeostasis, hepatic steatosis, or atherosclerosis. We further found no evidence of DOX-induced accumulation of p16Ink4a+-senescent cells at 1 or 12 weeks after DOX treatment. Neither did we observe an effect of elimination of p16Ink4a+-senescent cells on the development of diet-induced cardiometabolic complications in DOX-treated mice. Other markers for senescence were generally also not affected except for an increase in p21 and Cxcl10 in gonadal white adipose tissue long-term after DOX treatment. Together, our study does not support a significant role for p16Ink4a+-senescent cells in the development of diet-induced cardiometabolic disease in young adult DOX-treated female Ldlr-/- mice. These findings illustrate the need of further studies to understand the link between cancer therapy and cardiometabolic disease development in cancer survivors.


Subject(s)
Cardiovascular Diseases , Cyclin-Dependent Kinase Inhibitor p16 , Mice , Female , Animals , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p16/pharmacology , Cellular Senescence , Doxorubicin/toxicity , Anthracyclines/pharmacology
9.
J Biochem ; 173(6): 459-469, 2023 May 29.
Article in English | MEDLINE | ID: mdl-36888978

ABSTRACT

The LONRF family of proteins consists of three isozymes, LONRF1-3, which harbors RING (really interesting new gene) domain and Lon substrate binding domain. We have recently identified LONRF2 as a protein quality control ubiquitin ligase that acts predominantly in neurons. LONRF2 selectively ubiquitylates misfolded or damaged proteins for degradation. LONRF2-/- mice exhibit late-onset neurological deficits. However, the physiological implications of other LONRF isozymes remain unclear. Here, we analysed Lonrf1 expression and transcriptomics at the single-cell level under normal and pathological conditions. We found that Lonrf1 was ubiquitously expressed in different tissues. Its expression in LSEC and Kupffer cells increased with age in the liver. Lonrf1high Kupffer cells showed activation of regulatory pathways of peptidase activity. In normal and NASH (nonalcoholic steatohepatitis) liver, Lonrf1high LSECs showed activation of NF-kB and p53 pathways and suppression of IFNa, IFNg and proteasome signalling independent of p16 expression. During wound healing, Lonrf1high/p16low fibroblasts showed activation of cell growth and suppression of TGFb and BMP (bone morphogenetic protein) signalling, whereas Lonrf1high/p16high fibroblasts showed activation of WNT (wingless and Int-1) signalling. These results suggest that although Lonrf1 does not seem to be associated with senescence induction and phenotypes, LONRF1 may play a key role in linking oxidative damage responses and tissue remodelling during wound healing in different modes in senescent and nonsenescent cells.


Subject(s)
Non-alcoholic Fatty Liver Disease , Transcriptome , Animals , Mice , Gene Expression Profiling , Isoenzymes
10.
Nature ; 611(7935): 358-364, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36323784

ABSTRACT

The accumulation of senescent cells is a major cause of age-related inflammation and predisposes to a variety of age-related diseases1. However, little is known about the molecular basis underlying this accumulation and its potential as a target to ameliorate the ageing process. Here we show that senescent cells heterogeneously express the immune checkpoint protein programmed death-ligand 1 (PD-L1) and that PD-L1+ senescent cells accumulate with age in vivo. PD-L1- cells are sensitive to T cell surveillance, whereas PD-L1+ cells are resistant, even in the presence of senescence-associated secretory phenotypes (SASP). Single-cell analysis of p16+ cells in vivo revealed that PD-L1 expression correlated with higher levels of SASP. Consistent with this, administration of programmed cell death protein 1 (PD-1) antibody to naturally ageing mice or a mouse model with normal livers or induced nonalcoholic steatohepatitis reduces the total number of p16+ cells in vivo as well as the PD-L1+ population in an activated CD8+ T cell-dependent manner, ameliorating various ageing-related phenotypes. These results suggest that the heterogeneous expression of PD-L1 has an important role in the accumulation of senescent cells and inflammation associated with ageing, and the elimination of PD-L1+ senescent cells by immune checkpoint blockade may be a promising strategy for anti-ageing therapy.


Subject(s)
Aging , B7-H1 Antigen , Phenotype , Programmed Cell Death 1 Receptor , Animals , Mice , Aging/immunology , Aging/metabolism , Aging/pathology , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Inflammation/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Single-Cell Analysis , Non-alcoholic Fatty Liver Disease , Liver , Rejuvenation
11.
Science ; 378(6616): 192-201, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36227993

ABSTRACT

We engineered an ultrasensitive reporter of p16INK4a, a biomarker of cellular senescence. Our reporter detected p16INK4a-expressing fibroblasts with certain senescent characteristics that appeared shortly after birth in the basement membrane adjacent to epithelial stem cells in the lung. Furthermore, these p16INK4a+ fibroblasts had enhanced capacity to sense tissue inflammation and respond through their increased secretory capacity to promote epithelial regeneration. In addition, p16INK4a expression was required in fibroblasts to enhance epithelial regeneration. This study highlights a role for p16INK4a+ fibroblasts as tissue-resident sentinels in the stem cell niche that monitor barrier integrity and rapidly respond to inflammation to promote tissue regeneration.


Subject(s)
Cellular Senescence , Cyclin-Dependent Kinase Inhibitor p16 , Epithelial Cells , Fibroblasts , Genes, Reporter , Lung , Regeneration , Stem Cell Niche , Humans , Basement Membrane/cytology , Basement Membrane/physiology , Biomarkers/metabolism , Cellular Senescence/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Fibroblasts/metabolism , Inflammation/metabolism , Lung/pathology , Lung/physiology , Epithelial Cells/physiology , Stem Cell Niche/physiology
12.
Breast Cancer ; 29(6): 1076-1087, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35882754

ABSTRACT

BACKGROUND: Sacituzumab govitecan is an antibody-drug conjugate that delivers SN-38, an active metabolite of irinotecan, to the target molecule, trophoblast cell-surface antigen 2 (Trop-2). It is a promising drug for triple-negative breast cancer and is anticipated to be effective for luminal breast cancer. The efficacy of the agent relies on the expression of Trop-2 rather than its intracellular function. However, conditions that alter the Trop-2 expression have not been well investigated. METHODS: We tested a range of clinically related treatments for their effect on Trop-2 expression in cultured breast cancer cell lines. RESULTS: The expression level of Trop-2 differed among cell lines, independent of their subtypes, and was highly variable on treatment with kinase inhibitors, tamoxifen, irradiation, and chemotherapeutic agents including irinotecan. While inhibitors of AKT, RSK, and p38 MAPK suppressed the Trop-2 expression, tamoxifen treatment significantly increased Trop-2 expression in luminal cancer cell lines. Notably, luminal cancer cells with acquired resistance to tamoxifen also exhibited higher levels of Trop-2. We identified transcription factor EB (TFEB) as a possible mechanism underlying tamoxifen-induced elevation of Trop-2 expression. Tamoxifen triggers dephosphorylation of TFEB, an active form of TFEB, and the effect of tamoxifen on Trop-2 was prevented by depletion of TFEB. A luciferase reporter assay showed that Trop-2 induction by TFEB was dependent on a tandem E-box motif within the Trop-2 promoter region. CONCLUSIONS: Overall, these results suggest that the effectiveness of sacituzumab govitecan could be altered by concomitant treatment and that tamoxifen could be a favorable agent for combined therapy.


Subject(s)
Breast Neoplasms , Immunoconjugates , Triple Negative Breast Neoplasms , Female , Humans , Antigens, Neoplasm/metabolism , Breast Neoplasms/drug therapy , Camptothecin/pharmacology , Immunoconjugates/pharmacology , Irinotecan/therapeutic use , p38 Mitogen-Activated Protein Kinases/therapeutic use , Proto-Oncogene Proteins c-akt , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Transcription Factors , Triple Negative Breast Neoplasms/drug therapy
13.
Autophagy ; 17(11): 3776-3793, 2021 11.
Article in English | MEDLINE | ID: mdl-33706682

ABSTRACT

Preconditioning with a mild stressor such as fasting is a promising way to reduce severe side effects from subsequent chemo- or radiotherapy. However, the underlying mechanisms have been largely unexplored. Here, we demonstrate that the TP53/p53-FBXO22-TFEB (transcription factor EB) axis plays an essential role in this process through upregulating basal macroautophagy/autophagy. Mild stress-activated TP53 transcriptionally induced FBXO22, which in turn ubiquitinated KDM4B (lysine-specific demethylase 4B) complexed with MYC-NCOR1 suppressors for degradation, leading to transcriptional induction of TFEB. Upregulation of autophagy-related genes by increased TFEB dramatically enhanced autophagic activity and cell survival upon following a severe stressor. Mitogen-induced AKT1 activation counteracted this process through the phosphorylation of KDM4B, which inhibited FBXO22-mediated ubiquitination. Additionally, fbxo22-/- mice died within 10 h of birth, and their mouse embryonic fibroblasts (MEFs) showed a lowered basal autophagy, whereas FBXO22-overexpressing mice were resistant to chemotherapy. Taken together, these results suggest that TP53 upregulates basal autophagy through the FBXO22-TFEB axis, which governs the hormetic effect in chemotherapy.Abbreviations: BBC3/PUMA: BCL2 binding component 3; CDKN1A/p21: cyclin dependent kinase inhibitor 1A; ChIP-seq: chromatin immunoprecipitation followed by sequencing; DDB2: damage specific DNA binding protein 2; DRAM: DNA damage regulated autophagy modulator; ESR/ER: estrogen receptor 1; FMD: fasting mimicking diet; HCQ: hydroxychloroquine; KDM4B: lysine-specific demethylase 4B; MAP1LC3/LC3: microtubule associated protein 1 light chain 3 alpha; MEFs: mouse embryonic fibroblasts; MTOR: mechanistic target of rapamycin kinase; NCOR1: nuclear receptor corepressor 1; SCF: SKP1-CUL-F-box protein; SQSTM1: sequestosome 1; TFEB: transcription factor EB.


Subject(s)
Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , F-Box Proteins/metabolism , Hormesis , Receptors, Cytoplasmic and Nuclear/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/physiology , Cells, Cultured , F-Box Proteins/physiology , Female , Fibroblasts/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Cytoplasmic and Nuclear/physiology , Tumor Suppressor Protein p53/physiology , Ubiquitination
14.
Science ; 371(6526): 265-270, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33446552

ABSTRACT

Removal of senescent cells (senolysis) has been proposed to be beneficial for improving age-associated pathologies, but the molecular pathways for such senolytic activity have not yet emerged. Here, we identified glutaminase 1 (GLS1) as an essential gene for the survival of human senescent cells. The intracellular pH in senescent cells was lowered by lysosomal membrane damage, and this lowered pH induced kidney-type glutaminase (KGA) expression. The resulting enhanced glutaminolysis induced ammonia production, which neutralized the lower pH and improved survival of the senescent cells. Inhibition of KGA-dependent glutaminolysis in aged mice eliminated senescent cells specifically and ameliorated age-associated organ dysfunction. Our results suggest that senescent cells rely on glutaminolysis, and its inhibition offers a promising strategy for inducing senolysis in vivo.


Subject(s)
Aging/metabolism , Cellular Senescence/physiology , Glutaminase/metabolism , Adipose Tissue/enzymology , Aging/genetics , Ammonia/metabolism , Animals , Cell Survival , Cellular Senescence/genetics , Genes, Essential , Glutaminase/genetics , Humans , Hydrogen-Ion Concentration , Lung/enzymology , Male , Mice , Mice, Inbred C57BL , Skin/enzymology
15.
Biomater Sci ; 9(1): 199-211, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33174545

ABSTRACT

All human tissues experience aging that eventually causes organ dysfunction and disease. Cellular senescence was discovered in fibroblasts cultured in vitro. In adults, it is a primary defense mechanism against cancer, but also a major contributor to lifespan limits and disorders associated with aging. To assess how human blood vessels change in an aged environment, we developed an elementary tissue model-on-a-chip that comprises an in vitro three-dimensional model of a blood vessel embedded in a collagen gel with young or senescent skin fibroblasts. We found that senescent fibroblasts mechanically altered the surrounding extracellular matrix by exerting excessive traction stress. We then found that senescent fibroblasts induced sprouting angiogenesis of a microvessel via their senescence-associated secretory phenotype (SASP). Finally, we gathered evidence that the mechanical changes of the microenvironment play a role in sustaining SASP-induced angiogenesis. The model proved useful in monitoring morphological changes in blood vessels induced by senescent fibroblasts while controlling the proportion of senescent cells, and enabled the study of SASP inhibitors, a class of drugs useful in aging and cancer research.


Subject(s)
Lab-On-A-Chip Devices , Neoplasms , Aged , Aging , Cellular Senescence , Fibroblasts , Humans , Tumor Microenvironment
16.
Cell Metab ; 32(5): 814-828.e6, 2020 11 03.
Article in English | MEDLINE | ID: mdl-32949498

ABSTRACT

Cell senescence plays a key role in age-associated organ dysfunction, but the in vivo pathogenesis is largely unclear. Here, we generated a p16-CreERT2-tdTomato mouse model to analyze the in vivo characteristics of p16high cells at a single-cell level. We found tdTomato-positive p16high cells detectable in all organs, which were enriched with age. We also found that these cells failed to proliferate and had half-lives ranging from 2.6 to 4.2 months, depending on the tissue examined. Single-cell transcriptomics in the liver and kidneys revealed that p16high cells were present in various cell types, though most dominant in hepatic endothelium and in renal proximal and distal tubule epithelia, and that these cells exhibited heterogeneous senescence-associated phenotypes. Further, elimination of p16high cells ameliorated nonalcoholic steatohepatitis-related hepatic lipidosis and immune cell infiltration. Our new mouse model and single-cell analysis provide a powerful resource to enable the discovery of previously unidentified senescence functions in vivo.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p16/metabolism , Animals , Cell Line , Cellular Senescence , Humans , Mice , Mice, Inbred C57BL , Models, Biological , Single-Cell Analysis
17.
PLoS One ; 15(8): e0237814, 2020.
Article in English | MEDLINE | ID: mdl-32804975

ABSTRACT

Schaaf-Yang syndrome (SYS) is a neurodevelopmental disorder caused by truncating variants in the paternal allele of MAGEL2, located in the Prader-Willi critical region, 15q11-q13. Although the phenotypes of SYS overlap those of Prader-Willi syndrome (PWS), including neonatal hypotonia, feeding problems, and developmental delay/intellectual disability, SYS patients show autism spectrum disorder and joint contractures, which are atypical phenotypes for PWS. Therefore, we hypothesized that the truncated Magel2 protein could potentially produce gain-of-function toxic effects. To test the hypothesis, we generated two engineered mouse models; one, an overexpression model that expressed the N-terminal region of Magel2 that was FLAG tagged with a strong ubiquitous promoter, and another, a genome-edited model that carried a truncating variant in Magel2 generated using the CRISPR/Cas9 system. In the overexpression model, all transgenic mice died in the fetal or neonatal period indicating embryonic or neonatal lethality of the transgene. Therefore, overexpression of the truncated Magel2 could show toxic effects. In the genome-edited model, we generated a mouse model carrying a frameshift variant (c.1690_1924del; p(Glu564Serfs*130)) in Magel2. Model mice carrying the frameshift variant in the paternal or maternal allele of Magel2 were termed Magel2P:fs and Magel2M:fs, respectively. The imprinted expression and spatial distribution of truncating Magel2 transcripts in the brain were maintained. Although neonatal Magel2P:fs mice were lighter than wildtype littermates, Magel2P:fs males and females weighed the same as their wildtype littermates by eight and four weeks of age, respectively. Collectively, the overexpression mouse model may recapitulate fetal or neonatal death, which are the severest phenotypes for SYS. In contrast, the genome-edited mouse model maintains genomic imprinting and distribution of truncated Magel2 transcripts in the brain, but only partially recapitulates SYS phenotypes. Therefore, our results imply that simple gain-of-function toxic effects may not explain the patho-mechanism of SYS, but rather suggest a range of effects due to Magel2 variants as in human SYS patients.


Subject(s)
Antigens, Neoplasm/genetics , Mutation/genetics , Proteins/genetics , Animals , Antigens, Neoplasm/chemistry , Antigens, Neoplasm/metabolism , Body Weight , Brain/metabolism , Disease Models, Animal , Female , Gene Editing , Gene Expression Regulation , HEK293 Cells , Humans , Male , Mice, Inbred C57BL , Mice, Transgenic , Pedigree , Phenotype , Proteins/chemistry , Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
18.
Cancer Sci ; 111(8): 2718-2725, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32536008

ABSTRACT

Ubiquitin-dependent protein degradation has been implicated in the control of various cellular processes such as cell cycle control, transcriptional regulation, DNA damage repair, and apoptosis, many of which are involved in the initiation, progression, metastasis, and drug resistance of cancers. E3 ubiquitin ligases are known to be the second most prevalent cancer-related functional gene family next to protein kinases. Of these, FBXO22, an F-box receptor subunit of SCF E3 ligase, has recently been proposed to play a critical role in multiple aspects related to cancer development and therapy response. Firstly, FBXO22 is a key regulator of senescence induction through ubiquitylation of p53 for degradation. FBXO22 also acts as a molecular switch for the antagonistic and agonistic actions of selective estrogen receptor modulators (SERM) and determines the sensitivity of breast cancer to SERM by ubiquitylating KDM4B complexed with unliganded or SERMs-bound estrogen receptor (ER). Furthermore, FBXO22 binds to Bach1, a pro-metastatic transcription factor, suppressing Bach1-driven metastasis of lung adenocarcinoma, and loss of FBXO22 facilitates metastasis. These findings, as well as other reports, unveiled strikingly important roles of FBXO22 in cancer development and therapeutic strategy. In this review, we summarize recent findings of how FBXO22 regulates major cancer suppression pathways.


Subject(s)
Epigenesis, Genetic , F-Box Proteins/metabolism , Neoplasms/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , SKP Cullin F-Box Protein Ligases/metabolism , Animals , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Movement/genetics , Cellular Senescence/genetics , Disease Models, Animal , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Humans , Mice , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Neoplasms/pathology , Protein Subunits/metabolism , Proteolysis , Receptors, Estrogen/metabolism , Selective Estrogen Receptor Modulators/metabolism , Signal Transduction/genetics , Ubiquitination
19.
Nat Commun ; 10(1): 981, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30816115

ABSTRACT

Animal cells undergo rapid rounding during mitosis, ensuring proper chromosome segregation, during which an outward rounding force abruptly increases upon prometaphase entry and is maintained at a constant level during metaphase. Initial cortical tension is generated by the actomyosin system to which both myosin motors and actin network architecture contribute. However, how cortical tension is maintained and its physiological significance remain unknown. We demonstrate here that Cdk1-mediated phosphorylation of DIAPH1 stably maintains cortical tension after rounding and inactivates the spindle assembly checkpoint (SAC). Cdk1 phosphorylates DIAPH1, preventing profilin1 binding to maintain cortical tension. Mutation of DIAPH1 phosphorylation sites promotes cortical F-actin accumulation, increases cortical tension, and delays anaphase onset due to SAC activation. Measurement of the intra-kinetochore length suggests that Cdk1-mediated cortex relaxation is indispensable for kinetochore stretching. We thus uncovered a previously unknown mechanism by which Cdk1 coordinates cortical tension maintenance and SAC inactivation at anaphase onset.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , CDC2 Protein Kinase/metabolism , Chromosome Segregation/physiology , M Phase Cell Cycle Checkpoints/physiology , Actins/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Anaphase/physiology , Cyclin B1/metabolism , Formins , Gene Knockout Techniques , HEK293 Cells , HeLa Cells , Humans , Kinetochores/metabolism , Metaphase/physiology , Phosphorylation , Profilins/chemistry , Profilins/genetics , Profilins/metabolism , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
20.
Cereb Cortex ; 29(9): 3738-3751, 2019 08 14.
Article in English | MEDLINE | ID: mdl-30307479

ABSTRACT

SAD kinases regulate presynaptic vesicle clustering and neuronal polarization. A previous report demonstrated that Sada-/- and Sadb-/- double-mutant mice showed perinatal lethality with a severe defect in axon/dendrite differentiation, but their single mutants did not. These results indicated that they were functionally redundant. Surprisingly, we show that on a C57BL/6N background, SAD-A is essential for cortical development whereas SAD-B is dispensable. Sada-/- mice died within a few days after birth. Their cortical lamination pattern was disorganized and radial migration of cortical neurons was perturbed. Birth date analyses with BrdU and in utero electroporation using pCAG-EGFP vector showed a delayed migration of cortical neurons to the pial surface in Sada-/- mice. Time-lapse imaging of these mice confirmed slow migration velocity in the cortical plate. While the neurites of hippocampal neurons in Sada-/- mice could ultimately differentiate in culture to form axons and dendrites, the average length of their axons was shorter than that of the wild type. Thus, analysis on a different genetic background than that used initially revealed a nonredundant role for SAD-A in neuronal migration and differentiation.


Subject(s)
Cell Movement/physiology , Cerebral Cortex/embryology , Cerebral Cortex/enzymology , Neurons/enzymology , Protein Serine-Threonine Kinases/physiology , Animals , Axons/enzymology , Cells, Cultured , Female , Isoenzymes , Male , Mice, Inbred C57BL , Mice, Knockout , Protein Serine-Threonine Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...