Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Diabetes Res ; 2022: 3588297, 2022.
Article in English | MEDLINE | ID: mdl-35620571

ABSTRACT

This systematic review addresses the central research question, "what is known from the published, peer-reviewed literature about the impact of diabetes on the risk of bacterial urinary tract infections (UTI)?" We examine the results from laboratory studies where researchers have successfully adapted mouse models of diabetes to study the pathophysiology of ascending UTI. These studies have identified molecular and cellular effectors shaping immune defenses against infection of the diabetic urinary tract. In addition, we present evidence from clinical studies that in addition to diabetes, female gender, increased age, and diabetes-associated hyperglycemia, glycosuria, and immune impairment are important risk factors which further increase the risk of UTI in diabetic individuals. Clinical studies also show that the uropathogenic genera causing UTI are largely similar between diabetic and nondiabetic individuals, although diabetes significantly increases risk of UTI by drug-resistant uropathogenic bacteria.


Subject(s)
Bacterial Infections , Diabetes Mellitus , Urinary Tract Infections , Animals , Bacterial Infections/complications , Female , Mice , Urinary Tract Infections/complications
2.
mSphere ; 7(3): e0000422, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35477301

ABSTRACT

Uropathogenic Escherichia coli (UPEC) is the principal etiology of more than half of urinary tract infections (UTI) in humans with diabetes mellitus. Epidemiological data and studies in mouse model of ascending UTI have elucidated various host factors responsible for increasing the susceptibility of diabetic hosts to UPEC-UTI. In contrast, diabetic urinary microenvironment-mediated alterations in UPEC physiology and its contributions to shaping UPEC-UTI pathogenesis in diabetes have not been examined. To address our central hypothesis that glycosuria directly induces urinary virulence of UPEC, we compared virulence characteristics and gene expression in human UPEC strains UTI89 (cystitis) and CFT073 (pyelonephritis), exposed for 2 h in vitro to urine from either male or female donors that was either plain or supplemented with glucose to mimic glycosuria. Compared to control UPEC exposed to nutrient-rich culture medium, lysogeny broth, glycosuria-exposed UPEC exhibited significant increase in biofilm formation and reduction in the hemagglutination of Guinea pig erythrocytes (a measure of type 1 piliation). In addition, the analysis of UTI89 transcriptome by RNA sequencing revealed that 2-h-long, in vitro exposure to glycosuria also significantly alters expression of virulence and metabolic genes central to urinary virulence of UPEC. Addition of galactose as an alternative carbon source affected biofilm formation and gene expression profile of UPEC to an extent similar to that observed with glucose exposure. In summary, our results provide novel insights into how glycosuria-mediated rapid changes in UPEC fitness may facilitate UTI pathogenesis in the diabetic urinary microenvironment. IMPORTANCE Uropathogenic Escherichia coli (UPEC) is an important causative agent of urinary tract infections in diabetic humans. We examined the effects of in vitro exposure to glycosuria (presence of glucose in urine) on the virulence and gene expression by UPEC. Our results show that glycosuria rapidly (in 2 h) alters UPEC gene expression, induces biofilm formation, and suppresses type 1 piliation. These results offer novel insights into the pathogenesis of UPEC in the urinary tract.


Subject(s)
Escherichia coli Proteins , Glycosuria , Urinary Tract Infections , Uropathogenic Escherichia coli , Animals , Escherichia coli Proteins/genetics , Female , Gene Expression , Glucose/metabolism , Guinea Pigs , Male , Mice , Uropathogenic Escherichia coli/genetics , Virulence
3.
J Infect Dis ; 223(5): 843-847, 2021 03 03.
Article in English | MEDLINE | ID: mdl-32702082

ABSTRACT

To explore whether glycosuria induces virulence of uropathogens, in turn facilitating urinary tract infection (UTI), we exposed group B Streptococcus (GBS) strain 10/84 to human urine plain or with 300 mg/dL glucose (mimicking moderate glycosuria). Exposure to moderate glycosuria significantly augmented bacterial growth, kidney bacterial burden in a mouse model of ascending UTI, and virulence characteristics and expression of corresponding genes. Exposure to glycosuria increased GBS adherence to human bladder epithelial cell line and expression of corresponding PI2a fimbrial gene, antimicrobial peptide LL-37 resistance and bacterial surface charge modulating dltA, and GBS hemolytic ability and expression of genes encoding pore-forming toxins.


Subject(s)
Glycosuria , Streptococcal Infections , Urinary Tract Infections , Animals , Antimicrobial Peptides , Bacterial Adhesion , Cell Line , Glycosuria/complications , Humans , Mice , Streptococcal Infections/microbiology , Streptococcus agalactiae/genetics , Streptococcus agalactiae/pathogenicity , Urinary Tract Infections/microbiology , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...