Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Transl Res ; 237: 53-62, 2021 11.
Article in English | MEDLINE | ID: mdl-34217897

ABSTRACT

Cardiorenal syndrome I (CRS-1) denotes a state in which acute kidney injury occurs in the setting of acute heart failure (AHF). Isoproterenol (Iso) administration is widly used as an AHF model by transiently inducing extreme tachycardia, hypotension, and myocyte apoptosis and/or necrosis. To gain potential insights into renal manifestations of CRS-1, mice were subjected to the Iso-AHF model (50 mg Iso/kg), followed by renal functional and renal cortical assessments over 4 hours Iso induced acute azotemia (doubling of BUN, plasma creatinine) and significantly reduced renal plasma flow (prolonged plasma para-amino-hippurate clearance). Although no morphologic tubular injury was identified, marked increases in renal cortical 'stress markers' (NGAL, HO-1, IL-6, MCP-1 mRNAs) and oxidant stress (decreased glutathione, increased malondialdehyde) were observed. These changes were catalytic Fe dependent, given that the iron chelator desferrioxamine (DFO) significantly blunted, or completely reversed, these renal cortical abnormalities. Despite these acute changes, no lasting renal injury was observed (assessed over 3 days). To determine whether Iso directly impacts tubular cell integrity, cultured proximal tubule (HK-2) cells were exposed to Iso. Substantial Fe dependent cell injury (decreased MTT uptake), and Fe independent increases in HO-1/IL-6 mRNA expression were observed. We conclude that Iso-induced AHF is a useful reversible model of CRS-1. Despite its largely hemodynamic ('pre-renal') nature, Fe-mediated oxidative stress and pro-inflammatory reactions are induced. These arise, at least in part, from direct Iso- induced tubular cell toxicity, rather than simply being secondary to Iso-mediated hemodynamic events. Finally, Iso-triggered renal cytokine production can potentially contribute to 'organ cross talk' and a systemic pro-inflammatory state.


Subject(s)
Cardio-Renal Syndrome/chemically induced , Heart Failure/chemically induced , Iron/metabolism , Isoproterenol/toxicity , Kidney Diseases/etiology , Animals , Biomarkers/blood , Cardio-Renal Syndrome/complications , Cell Line , Deferoxamine/pharmacology , Gene Expression Regulation/drug effects , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Kidney Tubules, Proximal/drug effects , Mice , Siderophores/pharmacology
2.
Clin J Am Soc Nephrol ; 6(9): 2108-13, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21799150

ABSTRACT

BACKGROUND AND OBJECTIVES: Experimental acute kidney injury (AKI) activates the HMG-CoA reductase (HMGCR) gene, producing proximal tubule cholesterol loading. AKI also causes sloughing of proximal tubular cell debris into tubular lumina. This study tested whether these two processes culminate in increased urinary pellet cholesterol content, and whether the latter has potential AKI biomarker utility. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Urine samples were collected from 29 critically ill patients with (n = 14) or without (n= 15) AKI, 15 patients with chronic kidney disease, and 15 healthy volunteers. Centrifuged urinary pellets underwent lipid extraction, and the extracts were assayed for cholesterol content (factored by membrane phospholipid phosphate content). In vivo HMGCR activation was sought by measuring levels of RNA polymerase II (Pol II), and of a gene activating histone mark (H3K4m3) at exon 1 of the HMGCR gene (chromatin immunoprecipitation assay of urine chromatin samples). RESULTS: AKI+ patients had an approximate doubling of urinary pellet cholesterol content compared with control urine samples (versus normal; P < 0.001). The values significantly correlated (r, 0.5; P < 0.01) with serum, but not urine, creatinine concentrations. Conversely, neither critical illness without AKI nor chronic kidney disease raised pellet cholesterol levels. Increased HMGCR activity in the AKI+ patients was supported by three- to fourfold increased levels of Pol II, and of H3K4m3, at the HMGCR gene (versus controls or AKI- patients). CONCLUSIONS: (1) Clinical AKI, like experimental AKI, induces HMGCR gene activation; (2) increased urinary pellet cholesterol levels result; and (3) urine pellet cholesterol levels may have potential AKI biomarker utility. The latter will require future testing in a large prospective trial.


Subject(s)
Acute Kidney Injury/metabolism , Cholesterol/urine , Hydroxymethylglutaryl CoA Reductases/metabolism , Adult , Aged , DNA Methylation , Enzyme Activation , Exons , Female , Humans , Hydroxymethylglutaryl CoA Reductases/genetics , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL