Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 299(8): 104921, 2023 08.
Article in English | MEDLINE | ID: mdl-37328104

ABSTRACT

Steroidogenic factor-1 (SF-1) is a phospholipid-sensing nuclear receptor expressed in the adrenal glands, gonads, and hypothalamus which controls steroidogenesis and metabolism. There is significant therapeutic interest in SF-1 because of its oncogenic properties in adrenocortical cancer. Synthetic modulators are attractive for targeting SF-1 for clinical and laboratory purposes due to the poor pharmaceutical properties of its native phospholipid ligands. While small molecule agonists targeting SF-1 have been synthesized, no crystal structures have been reported of SF-1 in complexes with synthetic compounds. This has prevented the establishment of structure-activity relationships that would enable better characterization of ligand-mediated activation and improvement in current chemical scaffolds. Here, we compare the effects of small molecules in SF-1 and its close homolog, liver receptor homolog-1 (LRH-1), and identify several molecules that specifically activate LRH-1. We also report the first crystal structure of SF-1 in complex with a synthetic agonist that displays low nanomolar affinity and potency for SF-1. We use this structure to explore the mechanistic basis for small molecule agonism of SF-1, especially compared to LRH-1, and uncover unique signaling pathways that drive LRH-1 specificity. Molecular dynamics simulations reveal differences in protein dynamics at the pocket mouth as well as ligand-mediated allosteric communication from this region to the coactivator binding interface. Our studies, therefore, shed important insight into the allostery driving SF-1 activity and show potential for modulation of LRH-1 over SF-1.


Subject(s)
Models, Molecular , Molecular Dynamics Simulation , Receptors, Cytoplasmic and Nuclear , Small Molecule Libraries , Steroidogenic Factor 1 , Ligands , Phospholipids/chemistry , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Cytoplasmic and Nuclear/chemistry , Small Molecule Libraries/chemistry , Steroidogenic Factor 1/agonists , Steroidogenic Factor 1/chemistry , Humans , Crystallography, X-Ray
2.
J Med Chem ; 65(9): 6888-6902, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35503419

ABSTRACT

Liver receptor homologue-1 (LRH-1) is a phospholipid-sensing nuclear receptor that has shown promise as a target for alleviating intestinal inflammation and metabolic dysregulation in the liver. LRH-1 contains a large ligand-binding pocket, but generating synthetic modulators has been challenging. We have had recent success generating potent and efficacious agonists through two distinct strategies. We targeted residues deep within the pocket to enhance compound binding and residues at the mouth of the pocket to mimic interactions made by phospholipids. Here, we unite these two designs into one molecule to synthesize the most potent LRH-1 agonist to date. Through a combination of global transcriptomic, biochemical, and structural studies, we show that selective modulation can be driven through contacting deep versus surface polar regions in the pocket. While deep pocket contacts convey high affinity, contacts with the pocket mouth dominate allostery and provide a phospholipid-like transcriptional response in cultured cells.


Subject(s)
Phospholipids , Receptors, Cytoplasmic and Nuclear , Cell Line , Phospholipids/metabolism
3.
Bioorg Med Chem Lett ; 30(16): 127293, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32631515

ABSTRACT

LRH-1 is a nuclear receptor that regulates lipid metabolism and homeostasis, making it an attractive target for the treatment of diabetes and non-alcoholic fatty liver disease. Building on recent structural information about ligand binding from our labs, we have designed a series of new LRH-1 agonists that further engage LRH-1 through added polar interactions. While the current synthetic approach to this scaffold has, in large part, allowed for decoration of the agonist core, significant variation of the bridgehead substituent is mechanistically precluded. We have developed a new synthetic approach to overcome this limitation, identified that bridgehead substitution is necessary for LRH-1 activation, and described an alternative class of bridgehead substituents for effective LRH-1 agonist development. We determined the crystal structure of LRH-1 bound to a bridgehead-modified compound, revealing a promising opportunity to target novel regions of the ligand binding pocket to alter LRH-1 target gene expression.


Subject(s)
Aniline Compounds/pharmacology , Drug Development , Receptors, Cytoplasmic and Nuclear/agonists , Aniline Compounds/chemical synthesis , Aniline Compounds/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Docking Simulation , Molecular Structure , Oxidation-Reduction , Photochemical Processes , Receptors, Cytoplasmic and Nuclear/genetics , Structure-Activity Relationship
4.
Article in English | MEDLINE | ID: mdl-31097843

ABSTRACT

We present here the first experimental study of the microwave spectrum of deuterated 5-methyltropolone, a molecule which exhibits two large-amplitude motions: an intramolecular hydrogen transfer (deuterium transfer in the current case of deuterated 5-methyltropolone) and a methyl torsion. The main goal of this study was to get information on the isotopic dependence of the main tunneling parameters of 5-methyltropolone in the framework of the two dimensional tunneling formalism, which previously has shown some counterintuitive results for isotopic dependence of tunneling parameters in 2-methylmalonaldehyde. Measurements were carried out by Fourier-transform microwave spectroscopy in the 9 GHz to 26 GHz frequency range. Theoretical analysis was carried out using a tunneling-rotational Hamiltonian based on a G12 m extended-group-theory formalism. Our global fit of 384 transitions to 17 molecular parameters gave a weighted root-mean-square deviation of 0.8. The current study on the isotopic dependence of the main tunneling parameters in 5-methyltropolone supports the assumption of possible "leakage" between tunneling parameters in the two-dimensional tunneling formalism in use.

5.
PLoS One ; 7(5): e37010, 2012.
Article in English | MEDLINE | ID: mdl-22649505

ABSTRACT

Generation of biofuels from sugars in lignocellulosic biomass is a promising alternative to liquid fossil fuels, but efficient and inexpensive bioprocessing configurations must be developed to make this technology commercially viable. One of the major barriers to commercialization is the recalcitrance of plant cell wall polysaccharides to enzymatic hydrolysis. Biomass pretreatment with ionic liquids (ILs) enables efficient saccharification of biomass, but residual ILs inhibit both saccharification and microbial fuel production, requiring extensive washing after IL pretreatment. Pretreatment itself can also produce biomass-derived inhibitory compounds that reduce microbial fuel production. Therefore, there are multiple points in the process from biomass to biofuel production that must be interrogated and optimized to maximize fuel production. Here, we report the development of an IL-tolerant cellulase cocktail by combining thermophilic bacterial glycoside hydrolases produced by a mixed consortia with recombinant glycoside hydrolases. This enzymatic cocktail saccharifies IL-pretreated biomass at higher temperatures and in the presence of much higher IL concentrations than commercial fungal cocktails. Sugars obtained from saccharification of IL-pretreated switchgrass using this cocktail can be converted into biodiesel (fatty acid ethyl-esters or FAEEs) by a metabolically engineered strain of E. coli. During these studies, we found that this biodiesel-producing E. coli strain was sensitive to ILs and inhibitors released by saccharification. This cocktail will enable the development of novel biomass to biofuel bioprocessing configurations that may overcome some of the barriers to production of inexpensive cellulosic biofuels.


Subject(s)
Biofuels , Biotechnology/methods , Cellulases/metabolism , Ionic Liquids/metabolism , Lignin/metabolism , Panicum/chemistry , Escherichia coli/metabolism , Glycoside Hydrolases , Paenibacillus/genetics , Paenibacillus/metabolism , Proteomics , Rhodothermus/genetics , Rhodothermus/metabolism , Sequence Analysis, DNA , Temperature , Thermus thermophilus/genetics , Thermus thermophilus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...