Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 12(12)2022 12 16.
Article in English | MEDLINE | ID: mdl-36551317

ABSTRACT

Unconventional myosins are a superfamily of actin-based motor proteins that perform a number of roles in fundamental cellular processes, including (but not limited to) intracellular trafficking, cell motility, endocytosis, exocytosis and cytokinesis. 40 myosins genes have been identified in humans, which belong to different 12 classes based on their domain structure and organisation. These genes are widely expressed in different tissues, and mutations leading to loss of function are associated with a wide variety of pathologies while over-expression often results in cancer. Caenorhabditis elegans (C. elegans) is a small, free-living, non-parasitic nematode. ~38% of the genome of C. elegans has predicted orthologues in the human genome, making it a valuable tool to study the function of human counterparts and human diseases. To date, 8 unconventional myosin genes have been identified in the nematode, from 6 different classes with high homology to human paralogues. The hum-1 and hum-5 (heavy chain of an unconventional myosin) genes encode myosin of class I, hum-2 of class V, hum-3 and hum-8 of class VI, hum-6 of class VII and hum-7 of class IX. The hum-4 gene encodes a high molecular mass myosin (307 kDa) that is one of the most highly divergent myosins and is a member of class XII. Mutations in many of the human orthologues are lethal, indicating their essential properties. However, a functional characterisation for many of these genes in C. elegans has not yet been performed. This article reviews the current knowledge of unconventional myosin genes in C. elegans and explores the potential use of the nematode to study the function and regulation of myosin motors to provide valuable insights into their role in diseases.


Subject(s)
Caenorhabditis elegans , Myosins , Animals , Humans , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Myosins/genetics , Myosins/metabolism , Actins/metabolism , Cell Movement
2.
Cell Mol Life Sci ; 78(23): 7309-7337, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34704115

ABSTRACT

Human atrial and ventricular contractions have distinct mechanical characteristics including speed of contraction, volume of blood delivered and the range of pressure generated. Notably, the ventricle expresses predominantly ß-cardiac myosin while the atrium expresses mostly the α-isoform. In recent years exploration of the properties of pure α- & ß-myosin isoforms have been possible in solution, in isolated myocytes and myofibrils. This allows us to consider the extent to which the atrial vs ventricular mechanical characteristics are defined by the myosin isoform expressed, and how the isoform properties are matched to their physiological roles. To do this we Outline the essential feature of atrial and ventricular contraction; Explore the molecular structural and functional characteristics of the two myosin isoforms; Describe the contractile behaviour of myocytes and myofibrils expressing a single myosin isoform; Finally we outline the outstanding problems in defining the differences between the atria and ventricles. This allowed us consider what features of contraction can and cannot be ascribed to the myosin isoforms present in the atria and ventricles.


Subject(s)
Heart Atria/metabolism , Heart Ventricles/metabolism , Myocardial Contraction/physiology , Myocytes, Cardiac/physiology , Ventricular Myosins/metabolism , Amino Acid Sequence , Atrial Function/physiology , Blood Pressure/physiology , Humans , Myocytes, Cardiac/metabolism , Myofibrils/physiology , Protein Domains , Protein Isoforms , Ventricular Function/physiology
3.
PLoS Biol ; 19(6): e3001248, 2021 06.
Article in English | MEDLINE | ID: mdl-34111116

ABSTRACT

The speed of muscle contraction is related to body size; muscles in larger species contract at slower rates. Since contraction speed is a property of the myosin isoform expressed in a muscle, we investigated how sequence changes in a range of muscle myosin II isoforms enable this slower rate of muscle contraction. We considered 798 sequences from 13 mammalian myosin II isoforms to identify any adaptation to increasing body mass. We identified a correlation between body mass and sequence divergence for the motor domain of the 4 major adult myosin II isoforms (ß/Type I, IIa, IIb, and IIx), suggesting that these isoforms have adapted to increasing body mass. In contrast, the non-muscle and developmental isoforms show no correlation of sequence divergence with body mass. Analysis of the motor domain sequence of ß-myosin (predominant myosin in Type I/slow and cardiac muscle) from 67 mammals from 2 distinct clades identifies 16 sites, out of 800, associated with body mass (padj < 0.05) but not with the clade (padj > 0.05). Both clades change the same small set of amino acids, in the same order from small to large mammals, suggesting a limited number of ways in which contraction velocity can be successfully manipulated. To test this relationship, the 9 sites that differ between human and rat were mutated in the human ß-myosin to match the rat sequence. Biochemical analysis revealed that the rat-human ß-myosin chimera functioned like the native rat myosin with a 2-fold increase in both motility and in the rate of ADP release from the actin-myosin crossbridge (the step that limits contraction velocity). Thus, these sequence changes indicate adaptation of ß-myosin as species mass increased to enable a reduced contraction velocity and heart rate.


Subject(s)
Muscle Contraction/physiology , Myosin Type II/chemistry , Adaptation, Physiological , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Animals , Body Weight , Cell Line , Conserved Sequence , Humans , Phylogeny , Protein Domains , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Rats
4.
J Biol Chem ; 294(46): 17451-17462, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31582565

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is a common genetic disorder characterized by left ventricular hypertrophy and cardiac hyper-contractility. Mutations in the ß-cardiac myosin heavy chain gene (ß-MyHC) are a major cause of HCM, but the specific mechanistic changes to myosin function that lead to this disease remain incompletely understood. Predicting the severity of any ß-MyHC mutation is hindered by a lack of detailed examinations at the molecular level. Moreover, because HCM can take ≥20 years to develop, the severity of the mutations must be somewhat subtle. We hypothesized that mutations that result in early onset disease would have more severe changes in function than do later onset mutations. Here, we performed steady-state and transient kinetic analyses of myosins carrying one of seven missense mutations in the motor domain. Of these seven, four were previously identified in early onset cardiomyopathy screens. We used the parameters derived from these analyses to model the ATP-driven cross-bridge cycle. Contrary to our hypothesis, the results indicated no clear differences between early and late onset HCM mutations. Despite the lack of distinction between early and late onset HCM, the predicted occupancy of the force-holding actin·myosin·ADP complex at [Actin] = 3 Kapp along with the closely related duty ratio (the fraction of myosin in strongly attached force-holding states), and the measured ATPases all changed in parallel (in both sign and degree of change) compared with wildtype (WT) values. Six of the seven HCM mutations were clearly distinct from a set of previously characterized DCM mutations.


Subject(s)
Adenosine Triphosphatases/genetics , Cardiomyopathy, Hypertrophic/genetics , Myosins/genetics , Ventricular Myosins/genetics , Actin Cytoskeleton/genetics , Actins/chemistry , Actins/genetics , Adenosine Triphosphatases/chemistry , Age of Onset , Cardiomyopathy, Hypertrophic/pathology , Female , Humans , Kinetics , Male , Mutation, Missense/genetics , Myocardial Contraction/genetics , Myosin Light Chains/chemistry , Myosin Light Chains/genetics , Myosins/chemistry , Severity of Illness Index , Ventricular Myosins/chemistry
5.
J Biol Chem ; 294(39): 14267-14278, 2019 09 27.
Article in English | MEDLINE | ID: mdl-31387944

ABSTRACT

Striated muscle myosins are encoded by a large gene family in all mammals, including humans. These isoforms define several of the key characteristics of the different striated muscle fiber types, including maximum shortening velocity. We have previously used recombinant isoforms of the motor domains of seven different human myosin isoforms to define the actin·myosin cross-bridge cycle in solution. Here, we present data on an eighth isoform, the perinatal, which has not previously been characterized. The perinatal is distinct from the embryonic isoform, appearing to have features in common with the adult fast-muscle isoforms, including weak affinity of ADP for actin·myosin and fast ADP release. We go on to use a recently developed modeling approach, MUSICO, to explore how well the experimentally defined cross-bridge cycles for each isoform in solution can predict the characteristics of muscle fiber contraction, including duty ratio, shortening velocity, ATP economy, and load dependence of these parameters. The work shows that the parameters of the cross-bridge cycle predict many of the major characteristics of each muscle fiber type and raises the question of what sequence changes are responsible for these characteristics.


Subject(s)
Adaptation, Physiological , Muscle Contraction , Myosin Type II/metabolism , Adenosine Diphosphate/metabolism , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Animals , Cell Line , Humans , Mice , Muscles/metabolism , Muscles/physiology , Myosin Type II/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism
6.
Biochem Biophys Res Commun ; 506(2): 339-346, 2018 11 25.
Article in English | MEDLINE | ID: mdl-29080743

ABSTRACT

The actin cytoskeleton is modulated by regulatory actin-binding proteins which fine-tune the dynamic properties of the actin polymer to regulate function. One such actin-binding protein is tropomyosin (Tpm), a highly-conserved alpha-helical dimer which stabilises actin and regulates interactions with other proteins. Temperature sensitive mutants of Tpm are invaluable tools in the study of actin filament dependent processes, critical to the viability of a cell. Here we investigated the molecular basis of the temperature sensitivity of fission yeast Tpm mutants which fail to undergo cytokinesis at the restrictive temperatures. Comparison of Contractile Actomyosin Ring (CAR) constriction as well as cell shape and size revealed the cdc8.110 or cdc8.27 mutant alleles displayed significant differences in their temperature sensitivity and impact upon actin dependent functions during the cell cycle. In vitro analysis revealed the mutant proteins displayed a different reduction in thermostability, and unexpectedly yield two discrete unfolding domains when acetylated on their amino-termini. Our findings demonstrate how subtle changes in structure (point mutations or acetylation) alter the stability not simply of discrete regions of this conserved cytoskeletal protein but of the whole molecule. This differentially impacts the stability and cellular organisation of this essential cytoskeletal protein.


Subject(s)
Actin Cytoskeleton/metabolism , Actins/metabolism , Cell Cycle Proteins/metabolism , Gene Expression Regulation, Fungal , Protein Processing, Post-Translational , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/metabolism , Acetylation , Actin Cytoskeleton/genetics , Actin Cytoskeleton/ultrastructure , Actins/chemistry , Actins/genetics , Alleles , Cell Cycle/genetics , Cell Cycle Proteins/genetics , Cell Movement , Hot Temperature , Kinetics , Mutation , Protein Conformation, alpha-Helical , Protein Domains , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Stability , Schizosaccharomyces/cytology , Schizosaccharomyces/ultrastructure , Schizosaccharomyces pombe Proteins/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...