Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
1.
Front Genet ; 12: 717409, 2021.
Article in English | MEDLINE | ID: mdl-34887897

ABSTRACT

Properly quantifying environmental heat stress (HS) is still a major challenge in livestock breeding programs, especially as adverse climatic events become more common. The definition of critical periods and climatic variables to be used as the environmental gradient is a key step for genetically evaluating heat tolerance (HTol). Therefore, the main objectives of this study were to define the best critical periods and environmental variables (ENV) to evaluate HT and estimate variance components for HT in Large White pigs. The traits included in this study were ultrasound backfat thickness (BFT), ultrasound muscle depth (MDP), piglet weaning weight (WW), off-test weight (OTW), interval between farrowing (IBF), total number of piglets born (TNB), number of piglets born alive (NBA), number of piglets born dead (NBD), number of piglets weaned (WN), and weaning to estrus interval (IWE). Seven climatic variables based on public weather station data were compared based on three criteria, including the following: (1) strongest G×E estimate as measured by the slope term, (2) ENV yielding the highest theoretical accuracy of the genomic estimated breeding values (GEBV), and (3) variable yielding the highest distribution of GEBV per ENV. Relative humidity (for BFT, MDP, NBD, WN, and WW) and maximum temperature (for OTW, TNB, NBA, IBF, and IWE) are the recommended ENV based on the analyzed criteria. The acute HS (average of 30 days before the measurement date) is the critical period recommended for OTW, BFT, and MDP in the studied population. For WN, WW, IBF, and IWE, a period ranging from 34 days prior to farrowing up to weaning is recommended. For TNB, NBA, and NBD, the critical period from 20 days prior to breeding up to 30 days into gestation is recommended. The genetic correlation values indicate that the traits were largely (WN, WW, IBF, and IWE), moderately (OTW, TNB, and NBA), or weakly (MDP, BFT, and NBD) affected by G×E interactions. This study provides relevant recommendations of critical periods and climatic gradients for several traits in order to evaluate HS in Large White pigs. These observations demonstrate that HT in Large White pigs is heritable, and genetic progress can be achieved through genetic and genomic selection.

2.
J Dairy Sci ; 104(2): 2410-2421, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33358164

ABSTRACT

Study objectives were to evaluate the effects of replacing 40 mg/kg of dietary Zn from Zn sulfate (ZS) with Zn amino acid complex (ZA; Zinpro Corporation, Eden Prairie, MN) on inflammation and intestinal integrity in heat-stressed and pair-fed (PF) ruminants. Forty Holstein steers (173.6 ± 4.9 kg) were randomly assigned to 1 of 5 dietary-environmental treatments: (1) thermoneutral (TN) ad libitum with 75 mg/kg of dry matter (DM) ZS (ZSCON); (2) TN pair-fed with 75 mg/kg DM ZS (ZSPF); (3) TN pair-fed with 40 mg/kg DM ZA and 35 mg/kg DM ZS (ZAPF); (4) heat stress (HS) ad libitum with 75 mg/kg DM ZS (ZSHS); and (5) HS ad libitum 40 mg/kg DM ZA and 35 mg/kg DM ZS (ZAHS). Before study initiation, calves were fed their respective diets for 21 d. Following the pre-feeding phase, steers were transferred into environmental chambers and were subjected to 2 successive experimental periods. During period 1 (5 d), all steers were fed their respective diets ad libitum and housed in TN conditions (20.2 ± 1.4°C, 30.4 ± 4.3% relative humidity). During period 2 (6 d), ZSHS and ZAHS steers were exposed to cyclical HS conditions (27.1 ± 1.5°C to 35.0 ± 2.9°C, 19.3 ± 3.5% relative humidity), whereas the ZSCON, ZSPF, and ZAPF steers remained in TN conditions and were fed ad libitum or pair-fed relative to their ZSHS and ZAHS counterparts. Overall, steers exposed to HS had markedly increased rectal temperature (0.83°C), respiration rate (26 breaths per min), and skin temperature (8.00°C) relative to TN treatments. Rectal temperature from ZAHS steers was decreased (0.24°C) on d 4 to 6 of HS relative to ZSHS steers. Regardless of diet, HS decreased DMI (18%) relative to ZSCON steers. Circulating glucose from HS and PF steers decreased (16%) relative to ZSCON steers. Heat stress and nutrient restriction increased circulating nonesterified fatty acids 2- and 3-fold, respectively, compared with ZSCON steers. Serum amyloid A increased ~2-fold in PF relative to ZSCON and HS steers. We detected no treatment effect on blood pH; however, ZAHS steers had increased HCO3 relative to ZSHS. Relative to ZSHS, ZAHS steers had increased jejunum villi height (25%), a tendency for increased ileum villi height (9%), and decreased duodenal villi width (16%). In summary, ZA supplementation has some beneficial effects on thermal indices, intestinal architecture characteristics, and biomarkers of leaky gut in heat-stressed steers, indicative of an ameliorated heat load, and thus may be a nutritional strategy to minimize negative consequences of HS.


Subject(s)
Amino Acids/therapeutic use , Cattle Diseases/drug therapy , Dietary Supplements , Heat Stress Disorders/veterinary , Inflammation/veterinary , Intestines/drug effects , Zinc/therapeutic use , Animals , Biomarkers/metabolism , Cattle , Diet/veterinary , Fatty Acids, Nonesterified/blood , Heat Stress Disorders/drug therapy , Heat-Shock Response , Hot Temperature , Inflammation/drug therapy , Respiratory Rate/drug effects , Skin Temperature
3.
J Anim Sci Biotechnol ; 11: 75, 2020.
Article in English | MEDLINE | ID: mdl-32670571

ABSTRACT

BACKGROUND: Reduced protein diet manifested potential to mitigate heat production based on the concept of ideal amino acid profile. The hypothesis of this study was that lactating sows fed a low crude protein (LCP) diet with supplemental amino acid produce less heat compared to those fed a high crude protein (HCP) diet under both thermal neutral (TN) and heat stress (HS) conditions. METHODS: Thirty-two lactating sows were allotted to HCP (193 g CP/kg) and LCP (140 g CP/kg) diets under thermal neutral (TN, 21 ± 1.5 °C) or cycling heat stress (HS, 32 ± 1.5 °C daytime and 24 ± 1.5 °C nighttime) conditions. Diets contained 0.90% SID lysine and 10.8 MJ/kg net energy. Positive pressure indirect calorimeters were used to measure gas exchange in individual sows with litters, and individual piglets on days 4, 8, 14 and 18. Sow and litter weights were recorded on days 1, 10 and 21. RESULTS: Sow total heat production (THP) was calculated by subtracting litter THP from sow + litter THP based on BW0.75. Sow BW and body protein (BP) loss was greater for LCP diet compared to HCP diet in peak lactation (P < 0.05 and P < 0.01, respectively) and throughout the entire lactation period (P < 0.05 and P = 0.056, respectively) under HS conditions. Heat-stressed sows fed HCP diet had higher (P < 0.05) rectal temperature at 13:00 (P < 0.05) and 19:00 (P < 0.01), and higher respiration rate at 07:00 (P <  0.05), 13:00 (P < 0.05) and 19:00 (P < 0.05) compared to TN sows fed HCP diet. In sows fed LCP diet, those under HS tended to have higher (P = 0.098) rectal temperature at 13:00 and had higher (P <  0.05) respiration rate at 07:00, 13:00 and 19:00 compared to TN sows. The relationship between daily THP and days in lactation of sows fed LCP diet was quadratic (P < 0.05), with an ascending trend until day 14 and a descending trend from days 14 to 18. Sows fed LCP diet had lower daily THP at day 18 (P < 0.001) compared to those fed the HCP diet under HS conditions. CONCLUSION: Reduction in THP in sows fed LCP diet was largely associated with THP on day 18 of lactation under HS conditions. Feeding LCP diets alleviated the increased body temperature in sows under HS conditions throughout lactation, which was accompanied by a reduction in respiration rate. Total heat production is associated with days in lactation, in particular under HS conditions with THP appearing to peak between days 14 and 18.

4.
Animal ; 14(2): 379-387, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31298203

ABSTRACT

Heart rate variability (HRV) is a proxy measure of autonomic function and can be used as an indicator of swine stress. While traditional linear measures are used to distinguish between stressed and unstressed treatments, inclusion of nonlinear HRV measures that evaluate data structure and organization shows promise for improving HRV interpretation. The objective of this study was to evaluate the inclusion of nonlinear HRV measures in response to an acute heat episode. Twenty 12- to 14-week-old growing pigs were individually housed for 7 days and acclimated to thermoneutral conditions (20.35°C ± 0.01°C; 67.6% ± 0.2% RH) before undergoing one of the two treatments: (1) thermoneutral control (TN; n = 10 pigs) or (2) acute heat stress (HS; n = 10 pigs; 32.6°C ± 0.1°C; 26.2% ± 0.1% RH). In Phase 1 of the experimental procedure (P1; 60 min), pigs underwent a baseline HRV measurement period in thermoneutral conditions before treatment [Phase 2; P2; 60 min once gastrointestinal temperature (Tg) reached 40.6°C], where HS pigs were exposed to heated conditions and TN pigs remained in thermoneutral conditions. After P2, all pigs were moved back to thermoneutral conditions (Phase 3; P3; 60 min). During each phase, Tg data were collected every 5 min and behavioural data were collected to evaluate the amount of time each pig spent in an active posture. Additionally, linear (time and frequency domain) and nonlinear [sample entropy (SampEn), de-trended fluctuation analysis, percentage recurrence, percentage determinism (%DET), mean diagonal line length in a recurrence plot] HRV measures were quantified. Heat stressed pigs exhibited greater Tg (P = 0.002) and spent less time in an active posture compared to TN pigs during P2 (P = 0.0003). Additionally, low frequency to high frequency ratio was greater in HS pigs during P3 compared to TN pigs (P = 0.02). SampEn was reduced in HS pigs during P2 (P = 0.01) and P3 (P = 0.03) compared to TN pigs. Heat stressed pigs exhibited greater %DET during P3 (P = 0.03) and tended to have greater %DET (P = 0.09) during P2 than TN pigs. No differences between treatments were detected for the remaining HRV measures. In conclusion, linear HRV measures were largely unchanged during P2. However, changes to SampEn and %DET suggest increased heat stress as a result of the acute heat episode. Future work should continue to evaluate the benefits of including nonlinear HRV measures in HRV analysis of swine heat stress.


Subject(s)
Heart Rate , Heat-Shock Response , Swine/physiology , Animals , Body Temperature , Gastrointestinal Tract/physiology , Hot Temperature/adverse effects
5.
J Anim Sci ; 96(2): 510-520, 2018 Mar 06.
Article in English | MEDLINE | ID: mdl-29385474

ABSTRACT

Heat stress (HS) negatively impacts several swine production variables, including carcass fat quality and quantity. Pigs reared in HS have more adipose tissue than energetically predicted, explainable, in part, by HS-induced hyperinsulinemia. Study objectives were to evaluate insulin's role in altering fat characteristics during HS via feeding insulin-sensitizing compounds. Forty crossbred barrows (113 ± 9 kg BW) were randomly assigned to one of five environment by diet treatments: 1) thermoneutral (TN) fed ad libitum (TNAL), 2) TN and pair-fed (TNPF), 3) HS fed ad libitum (HSAL), 4) HS fed ad libitum with sterculic oil (SO) supplementation (HSSO; 13 g/d), and 5) HS fed ad libitum with dietary chromium (Cr) supplementation (HSCr; 0.5 mg/d; Kemin Industries, Des Moines, IA). The study consisted of three experimental periods (P). During P0 (2 d), all pigs were exposed to TN conditions (23 ± 3 °C, 68 ± 10% RH) and fed ad libitum. During P1 (7 d), all pigs received their respective dietary supplements, were maintained in TN conditions, and fed ad libitum. During P2 (21 d), HSAL, HSSO, and HSCr pigs were fed ad libitum and exposed to cyclical HS conditions (28 to 33 °C, 58 ± 10% RH). The TNAL and TNPF pigs remained in TN conditions and were fed ad libitum or pair-fed to their HSAL counterparts. Rectal temperature (TR), respiration rate (RR), and skin temperature (TS) were obtained daily at 0600 and 1800 h. At 1800 h, HS exposed pigs had increased TR, RR, and TS relative to TNAL controls (1.13 °C, 48 bpm, and 3.51 °C, respectively; P < 0.01). During wk 2 and 3 of P2, HSSO pigs had increased 1800 h TR relative to HSAL and HSCr (~0.40 and ~0.42 °C, respectively; P ≤ 0.05). Heat stress decreased ADFI and ADG compared to TNAL pigs (2.24 vs. 3.28 and 0.63 vs. 1.09 kg/d, respectively; P < 0.01) and neither variable was affected by SO or Cr supplementation. Heat stress increased or tended to increase moisture content of abdominal (7.7 vs. 5.9%; P = 0.07) and inner s.c. (11.4 vs. 9.8%; P < 0.05) adipose depots compared to TNAL controls. Interestingly, TNPF pigs also had increased adipose tissue moisture content and this was most pronounced in the outer s.c. depot (15.0 vs. 12.2%; P < 0.01) compared to TNAL pigs. Heat stress had little or no effect on fatty acid composition of abdominal, inner, and outer s.c. adipose tissue depots. In summary, the negative effects of HS on fat quality do not appear to be fatty acid composition related, but may be explained by increased adipose tissue moisture content.


Subject(s)
Chromium/pharmacology , Dietary Supplements , Insulin/metabolism , Swine/physiology , Adipose Tissue/drug effects , Adipose Tissue/physiology , Animals , Diet/veterinary , Hot Temperature , Male , Random Allocation , Respiratory Rate/drug effects , Stress, Physiological
6.
J Anim Sci ; 95(9): 3914-3921, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28992016

ABSTRACT

The study objective was to characterize effects of early gestation in utero heat stress (IUHS) on postnatal fasting heat production (FHP) and blood biomarkers associated with metabolism in growing pigs. Based on previous observation of increased postnatal core body temperature set point in IUHS pigs, we hypothesized that FHP would be altered during postnatal life because of IUHS. Pregnant first-parity gilts were exposed to thermoneutral (TN; = 4; 17.8 ± 0.1°C) or heat stress (HS; = 4; cyclical 28 to 38°C) conditions from d 30 to 60 of gestation. At weaning (21 d of age), 2 median-weight male pigs (1 barrow and 1 boar) were selected from each litter ( = 8 in utero TN [IUTN] and 8 IUHS pigs) and then housed in TN conditions based on age. Blood samples were collected at 8, 9, and 10 wk of age when pigs were in a fed state to analyze thyroxine (T4) and triiodothyronine (T3) concentrations. Pigs were trained to enter an indirect calorimeter from wk 8 through 10 of life and then acclimated over a 24-h period 1 wk prior to testing. At 12 wk of age, pigs were fasted for 24 h, and then indirect calorimetry was performed on individual pigs over a 23-h testing period to determine FHP and the respiratory quotient in 3 intervals (0900 to 1700 h, 1700 to 0000 h, and 0000 to 0800 h). Body weight was determined before and after testing and was similar for all pigs ( = 0.77; 37.0 ± 0.5 kg BW). Data were analyzed using PROC MIXED in SAS 9.4. No boar vs. barrow differences were observed with any analysis. Overall, FHP per kilogram BW was greater ( = 0.03; 12.1%) in IUHS pigs compared with IUTN pigs. Fasting heat production per kilogram BW was greater ( < 0.01; 19.8%) from 0900 to 1700 h compared with 1700 to 0000 h and 0000 to 0800 h and was greater (10.9%) from 1700 to 0000 h compared with 0000 to 0800 h. The RQ did not differ by in utero treatment ( = 0.51; 0.72 ± 0.01); however, the RQ was increased ( < 0.01; 13.0%) from 1700 to 0000 h compared with 0900 to 1700 h and 0000 to 0800 h. No other FHP and RQ differences were detected. Although no in utero treatment differences were observed for T4 ( = 0.11; 52.2 ± 6.2 ng/mL), T3 was greater overall ( = 0.04; 19.5%) in IUHS pigs than in IUTN pigs. In summary, FHP and circulating T3 were increased in IUHS pigs, and this may have implications for postnatal production efficiency in pigs gestated during hot summer months.


Subject(s)
Stress, Physiological , Swine/physiology , Thermogenesis , Animals , Biomarkers/blood , Body Temperature , Body Weight , Fasting , Female , Male , Parity , Pregnancy , Sus scrofa/growth & development , Sus scrofa/metabolism , Sus scrofa/physiology , Swine/growth & development , Swine/metabolism , Thyroxine/blood , Triiodothyronine/blood
7.
J Dairy Sci ; 100(5): 4113-4127, 2017 May.
Article in English | MEDLINE | ID: mdl-28342610

ABSTRACT

Study objectives were to evaluate the effects of intentionally reduced intestinal barrier function on productivity, metabolism, and inflammatory indices in otherwise healthy dairy cows. Fourteen lactating Holstein cows (parity 2.6 ± 0.3; 117 ± 18 d in milk) were enrolled in 2 experimental periods. Period 1 (5 d) served as the baseline for period 2 (7 d), during which cows received 1 of 2 i.v. treatments twice per day: sterile saline or a gamma-secretase inhibitor (GSI; 1.5 mg/kg of body weight). Gamma-secretase inhibitors reduce intestinal barrier function by inhibiting crypt cell differentiation into absorptive enterocytes. During period 2, control cows receiving sterile saline were pair-fed (PF) to the GSI-treated cows, and all cows were killed at the end of period 2. Administering GSI increased goblet cell area 218, 70, and 28% in jejunum, ileum, and colon, respectively. In the jejunum, GSI-treated cows had increased crypt depth and reduced villus height, villus height-to-crypt depth ratio, cell proliferation, and mucosal surface area. Plasma lipopolysaccharide binding protein increased with time, and tended to be increased 42% in GSI-treated cows relative to PF controls on d 5 to 7. Circulating haptoglobin and serum amyloid A concentrations increased (585- and 4.4-fold, respectively) similarly in both treatments. Administering GSI progressively reduced dry matter intake (66%) and, by design, the pattern and magnitude of decreased nutrient intake was similar in PF controls. A similar progressive decrease (42%) in milk yield occurred in both treatments, but we observed no treatment effects on milk components. Cows treated with GSI tended to have increased plasma insulin (68%) and decreased circulating nonesterified fatty acids (29%) compared with PF cows. For both treatments, plasma glucose decreased with time while ß-hydroxybutyrate progressively increased. Liver triglycerides increased 221% from period 1 to sacrifice in both treatments. No differences were detected in liver weight, liver moisture, or body weight change. Intentionally compromising intestinal barrier function caused inflammation, altered metabolism, and markedly reduced feed intake and milk yield. Further, we demonstrated that progressive feed reduction appeared to cause leaky gut and inflammation.


Subject(s)
Gastrointestinal Tract/microbiology , Lactation , 3-Hydroxybutyric Acid/blood , Animal Feed , Animals , Cattle , Diet/veterinary , Fatty Acids, Nonesterified/blood , Female , Inflammation/metabolism , Milk/metabolism
8.
Proc Biol Sci ; 284(1848)2017 02 08.
Article in English | MEDLINE | ID: mdl-28179513

ABSTRACT

White-nose syndrome (WNS) is a fungal disease responsible for decimating many bat populations in North America. Pseudogymnoascus destructans (Pd), the psychrophilic fungus responsible for WNS, prospers in the winter habitat of many hibernating bat species. The immune response that Pd elicits in bats is not yet fully understood; antibodies are produced in response to infection by Pd, but they may not be protective and indeed may be harmful. To understand how bats respond to infection during hibernation, we studied the effect of Pd inoculation on the survival and gene expression of captive hibernating Myotis lucifugus with varying pre-hibernation antifungal antibody titres. We investigated gene expression through the transcription of selected cytokine genes (Il6, Il17a, Il1b, Il4 and Ifng) associated with inflammatory, Th1, Th2 and Th17 immune responses in wing tissue and lymph nodes. We found no difference in survival between bats with low and high anti-Pd titres, although anti-Pd antibody production during hibernation differed significantly between infected and uninfected bats. Transcription of Il6 and Il17a was higher in the lymph nodes of infected bats compared with uninfected bats. Increased transcription of these cytokines in the lymph node suggests that a pro-inflammatory immune response to WNS is not restricted to infected tissues and occurs during hibernation. The resulting Th17 response may be protective in euthermic bats, but because it may disrupt torpor, it could be detrimental during hibernation.


Subject(s)
Chiroptera/immunology , Hibernation/immunology , Mycoses/veterinary , Animals , Ascomycota , Chiroptera/microbiology , Cytokines/immunology , Mycoses/immunology , North America , Th17 Cells/immunology
9.
J Anim Sci ; 95(1): 91-102, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28177383

ABSTRACT

Study objectives were to evaluate the effects of post-weaning transport during heat stress (HS) and thermoneutral (TN) conditions when dietary antibiotics are removed or replaced with a nutraceutical. Sixty mixed sex piglets from 10 sows ( = 6 piglets/sow) were weaned (18.8 ± 0.8 d of age) and then herded up ramps into 1 of 2 simulated transport trailers in either TN (28.8 ± 0.2°C) or HS (cyclical 32 to 37°C) conditions where they remained for 12 h. During the 12 h of simulated transport, fans were used to simulate air movement through the trailer, feed and water were withheld, and rectal temperature (T) was measured hourly. Following the 12 h simulated transport, piglets were unloaded from the trailer, weighed, and then housed individually in TN conditions [28.5 ± 0.1°C; 29.1 ± 0.1% relative humidity (RH)] and assigned to 1 of 3 dietary treatments balanced by weaning weight, sex, sow, and transport environment. Treatments were dietary antibiotics [A; = 20 piglets; 5.5 ± 0.2 kg BW; chlortetracycline (400 g/ton) + tiamulin (35 g/ton)], no dietary antibiotics (NA; = 20 piglets; 5.6 ± 0.2 kg BW), or 0.20% L-glutamine (GLU; = 20 piglets; 5.6 ± 0.2 kg BW) fed for 14 d. During the diet treatment period, feed intake (FI), BW, and behaviors were monitored daily. At the conclusion of the diet treatment period, all piglets were euthanized and intestinal samples were collected for histology. The T and post-transport BW loss were increased in HS (40.7°C and 0.43 kg, respectively) compared to TN-exposed (39.2°C and 0.27 kg, respectively) piglets during simulated transport. Throughout the 14 d dietary treatment phase, FI was greater overall ( < 0.01; 60.3%) in GLU compared to A and NA pigs, and tended to be greater (37.7%) in A compared to NA pigs. BW was greater overall ( < 0.01; 8.7%) in GLU and A compared to NA pigs, but no differences were detected between A and GLU pigs. Lying behavior was greater ( = 0.05; 11.7%) in NA compared to A and GLU piglets in the first 2 d following simulated transport. The villus height to crypt depth ratio was greater ( < 0.05) in the duodenum (12.1%) and jejunum (12.8%) for A and GLU compared to NA pigs, and greater in the ileum (15.6%) for GLU compared to A and NA pigs. In summary, withholding dietary antibiotics after weaning and transport can negatively affect piglet productivity and measures of intestinal morphology compared to dietary antibiotic administration and L-glutamine provision.


Subject(s)
Anti-Bacterial Agents/pharmacology , Behavior, Animal/physiology , Glutamine/pharmacology , Hot Temperature , Swine/physiology , Animal Feed/analysis , Animals , Body Weight/drug effects , Diet/veterinary , Female , Heat Stress Disorders , Intestinal Mucosa/drug effects , Intestine, Small/anatomy & histology
10.
J Therm Biol ; 61: 29-37, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27712657

ABSTRACT

Rapidly cooling pigs after heat stress (HS) results in a pathophysiological condition, and because rapid temperature fluctuations may be associated with reduced reproductive success in sows, it lends itself to the hypothesis that these conditions may be linked. Objectives were to determine the effects of rapid cooling on thermal response and future reproductive success in pigs. Thirty-six replacement gilts (137.8±0.9kg BW) were estrus synchronized and then 14.1±0.4 d after estrus confirmation, pigs were exposed to thermoneutral conditions (TN; n=12; 19.7±0.9°C) for 6h, or HS (36.3±0.5°C) for 3h, followed by 3h of rapid cooling (HSRC; n=12; immediate TN exposure and water dousing) or gradual cooling (HSGC; n=12; gradual decrease to TN conditions) repeated over 2 d. Vaginal (TV) and gastrointestinal tract temperatures (TGI) were obtained every 15min, and blood was collected on d 1 and d 2 during the HS and recovery periods at 180 and 60min, respectively. Pigs were bred 8.3±0.8 d after thermal treatments over 2 d. Reproductive tracts were collected and total fetus number and viability were recorded 28.0±0.8 d after insemination. HS increased TV and TGI (P=0.01; 0.98°C) in HSRC and HSGC compared to TN pigs. During recovery, TV was reduced from 15 to 105min (P=0.01; 0.33°C) in HSRC compared to HSGC pigs, but no overall differences in TGI were detected (P<0.05; 39.67°C). Rapid cooling increased (P<0.05) TNFα compared to HSGC and TN pigs during recovery-d 1 (55.2%), HS-d 2 (35.1%), and recovery-d 2 (64.9%). Viable fetuses tended to be reduced (P=0.08; 10.5%) and moribund fetuses tended to be increased (P=0.09; 159.3%) in HSRC compared to HSGC and TN pigs. In summary, rapid cooling prior to breeding may contribute to reduced fetal viability and reproductive success in pigs.


Subject(s)
Body Temperature , Reproduction , Stress, Physiological , Swine/physiology , Animals , Body Temperature Regulation , Breeding , Cold Temperature , Cold-Shock Response , Female , Heat Stress Disorders/blood , Heat Stress Disorders/physiopathology , Heat Stress Disorders/veterinary , Heat-Shock Response , Hot Temperature , Insulin Resistance , Male , Swine/blood , Tumor Necrosis Factor-alpha/blood
11.
J Anim Sci ; 93(9): 4312-22, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26440331

ABSTRACT

In utero heat stress (IUHS) negatively impacts postnatal development, but how it alters future body temperature parameters and energetic metabolism is not well understood. Future body temperature indices and bioenergetic markers were characterized in pigs from differing in utero thermal environments during postnatal thermoneutral (TN) and cyclical heat stress (HS) exposure. First-parity pregnant gilts ( = 13) were exposed to 1 of 4 ambient temperature (T) treatments (HS [cyclic 28°C to 34°C] or TN [cyclic 18°C to 22°C]) applied for the entire gestation (HSHS, TNTN), HS for the first half of gestation (HSTN), or HS for the second half of gestation (TNHS). Twenty-four offspring (23.1 ± 1.2 kg BW; = 6 HSHS, = 6 TNTN, = 6 HSTN, = 6 TNHS) were housed in TN (21.7°C ± 0.7°C) conditions and then exposed to 2 separate but similar HS periods (HS1 = 6 d; HS2 = 6 d; cycling 28°C to 36°C). Core body temperature (T) was assessed every 15 min with implanted temperature recorders. Regardless of in utero treatment, T increased during both HS periods ( = 0.01; 0.58°C). During TN, HS1, and HS2, all IUHS pigs combined had increased T ( = 0.01; 0.36°C, 0.20°C, and 0.16°C, respectively) compared to TNTN controls. Although unaffected by in utero environment, the total plasma thyroxine to triiodothyronine ratio was reduced ( = 0.01) during HS1 and HS2 (39% and 29%, respectively) compared with TN. In summary, pigs from IUHS maintained an increased T compared with TNTN controls regardless of external T, and this thermal differential may have practical implications to developmental biology and animal bioenergetics.


Subject(s)
Heat Stress Disorders/veterinary , Hot Temperature , Swine Diseases/pathology , Animals , Body Temperature , Female , Heat Stress Disorders/pathology , Parity , Pregnancy , Swine , Time Factors
12.
Transl Psychiatry ; 5: e607, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26196440

ABSTRACT

Genetic associations involving both rare and common alleles have been reported for schizophrenia but there have been no systematic scans for rare recessive genotypes using fully phased trio data. Here, we use exome sequencing in 604 schizophrenia proband-parent trios to investigate the role of recessive (homozygous or compound heterozygous) nonsynonymous genotypes in the disorder. The burden of recessive genotypes was not significantly increased in probands at either a genome-wide level or in any individual gene after adjustment for multiple testing. At a system level, probands had an excess of nonsynonymous compound heterozygous genotypes (minor allele frequency, MAF ⩽ 1%) in voltage-gated sodium channels (VGSCs; eight in probands and none in parents, P = 1.5 × 10(-)(4)). Previous findings of multiple de novo loss-of-function mutations in this gene family, particularly SCN2A, in autism and intellectual disability provide biological and genetic plausibility for this finding. Pointing further to the involvement of VGSCs in schizophrenia, we found that these genes were enriched for nonsynonymous mutations (MAF ⩽ 0.1%) in cases genotyped using an exome array, (5585 schizophrenia cases and 8103 controls), and that in the trios data, synaptic proteins interacting with VGSCs were also enriched for both compound heterozygosity (P = 0.018) and de novo mutations (P = 0.04). However, we were unable to replicate the specific association with compound heterozygosity at VGSCs in an independent sample of Taiwanese schizophrenia trios (N = 614). We conclude that recessive genotypes do not appear to make a substantial contribution to schizophrenia at a genome-wide level. Although multiple lines of evidence, including several from this study, suggest that rare mutations in VGSCs contribute to the disorder, in the absence of replication of the original findings regarding compound heterozygosity, this conclusion requires evaluation in a larger sample of trios.


Subject(s)
Exome/genetics , Genes, Recessive/genetics , Schizophrenia/genetics , Case-Control Studies , Family , Female , Gene Frequency , Genetic Predisposition to Disease/genetics , Genotype , Heterozygote , Homozygote , Humans , Male , Voltage-Gated Sodium Channels/genetics
13.
J Anim Sci ; 93(1): 71-81, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25568358

ABSTRACT

Environmentally induced heat stress (HS) negatively influences production variables in agriculturally important species. However, the extent to which HS experienced in utero affects nutrient partitioning during the rapid lean tissue accretion phase of postnatal growth is unknown. Study objectives were to compare future whole-body tissue accretion rates in pigs exposed to differing in utero and postnatal thermal environments when lean tissue deposition is likely maximized. Pregnant sows were exposed to thermoneutral (TN; cyclical 15°C nighttime and 22°C daytime; n = 9) or HS (cyclical 27°C nighttime and 37°C daytime; n = 12) conditions during their entire gestation. Twenty-four offspring from in utero TN (IUTN; n = 6 gilts and 6 barrows; 30.8 ± 0.2 kg BW) and in utero HS (IUHS; n = 6 gilts and 6 barrows; 30.3 ± 0.2 kg BW) were euthanized as an initial slaughter group (ISG). Following the ISG, 48 pigs from IUTN (n = 12 gilts and 12 barrows; 34.1 ± 0.5 kg BW) and IUHS (n = 12 gilts and 12 barrows; 33.3 ± 0.3 kg BW) were exposed to constant HS (34.1 ± 2.4°C) or TN (21.5 ± 2.0°C) conditions until they reached 61.5 ± 0.8 kg BW, at which point they were sacrificed and their whole-body composition was determined. Homogenized carcasses were analyzed for N, crude fat, ash, water, and GE content. Data were analyzed using PROC MIXED in SAS 9.3. Rectal temperature and respiration rate increased (P < 0.01) during postnatal HS compared to TN (39.4 vs. 39.0°C and 94 vs. 49 breaths per minute, respectively). Regardless of in utero environment, postnatal HS reduced (P < 0.01) feed intake (2.06 vs. 2.37 kg/d) and ADG (0.86 vs. 0.98 kg/d) compared to TN conditions. Postnatal HS did not alter water, protein, and ash accretion rates but reduced lipid accretion rates (198 vs. 232 g/d; P < 0.04) compared to TN-reared pigs. In utero environment had no effect on future tissue deposition rates; however, IUHS pigs from the ISG had reduced liver weight (P < 0.04; 17.9%) compared to IUTN controls. In summary, postnatal HS reduced adipose tissue accretion rates, but IUHS did not appear to impact either lean or adipose tissue accretion during this specific growth phase.


Subject(s)
Body Composition/physiology , Heat Stress Disorders/veterinary , Hot Temperature , Stress, Physiological , Swine Diseases/etiology , Swine/physiology , Animals , Body Temperature , Female , Heat Stress Disorders/physiopathology , Pregnancy , Prenatal Exposure Delayed Effects/physiopathology , Swine/growth & development , Swine Diseases/physiopathology
14.
J Anim Sci ; 93(1): 82-92, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25568359

ABSTRACT

The detrimental effects of heat stress (HS) on animal productivity have been well documented. However, whether in utero HS interacts with a future thermal insult to alter tissue deposition during the finishing phase of pig growth is unknown. Study objectives were to compare the subsequent rate and quantity of whole-body tissue accretion in pigs exposed to differing in utero and postnatal thermal environments. Pregnant sows were exposed to thermoneutral (TN; cyclical 15°C nighttime and 22°C daytime; n = 9) or HS (cyclical 27°C nighttime and 37°C daytime; n = 11) conditions during their entire gestation. Twenty-four offspring from in utero TN (IUTN; n = 6 gilts and 6 barrows; 62.4 ± 0.7 kg BW) and in utero HS (IUHS; n = 6 gilts and 6 barrows; 61.9 ± 0.8 kg BW) were euthanized as part of an initial slaughter group (ISG). After the ISG, 48 pigs from IUTN (n = 12 gilts and 12 barrows; 66.1 ± 1.0 kg BW) and IUHS (n = 12 gilts and 12 barrows; 63.4 ± 0.7 kg BW) were exposed to constant HS (34.4 ± 1.8°C) or TN (22.7 ± 2.5°C) conditions until they reached 80.5 ± 1.5 kg BW, at which point they were sacrificed and their whole-body composition was determined. Homogenized carcasses were analyzed for N, crude fat, ash, water, and GE content. Data were analyzed using PROC MIXED in SAS 9.3. Rectal temperature and respiration rate increased during postnatal HS compared to TN (39.6 vs. 39.3°C and 92 vs. 58 breaths per minute, respectively; P < 0.01). Postnatal HS decreased (P < 0.01) feed intake (2.13 vs. 2.65 kg/d) and ADG (0.70 vs. 0.94 kg/d) compared to TN conditions, but neither variable was influenced by in utero environment. Whole-body protein and lipid accretion rates were reduced in HS pigs compared to TN controls (126 vs. 164 g/d and 218 vs. 294 g/d, respectively; P < 0.04). Independent of postnatal environments, IUHS reduced future protein accretion rates (16%; P < 0.01) and tended to increase lipid accretion rates (292 vs. 220 g/d; P < 0.07) compared to IUTN controls. The ratio of lipid to protein accretion rates increased (95%; P < 0.01) in IUHS pigs compared to IUTN controls. In summary, the future hierarchy of tissue accretion is altered by IUHS, and this modified nutrient partitioning favors adipose deposition at the expense of skeletal muscle during this specific phase of growth.


Subject(s)
Body Composition/physiology , Heat Stress Disorders/veterinary , Prenatal Exposure Delayed Effects/physiopathology , Sus scrofa , Swine Diseases/physiopathology , Animals , Body Temperature , Female , Heat Stress Disorders/physiopathology , Pregnancy , Swine , Temperature
15.
Int J Biometeorol ; 59(4): 385-96, 2015 Apr.
Article in English | MEDLINE | ID: mdl-24939412

ABSTRACT

Cattle of the same breed from different regions of the USA may have altered responses to heat stress and fescue toxicosis. Angus steers from Missouri (MO ANG, n = 10, 513.6 ± 13.6 kg BW) and Oklahoma (OK ANG, n = 10, 552.8 ± 12.0 kg BW) were fed a diet containing either endophyte-infected (E+, 30 µg ergovaline/kg BW/day) or endophyte-uninfected (E-, 0 µg ergovaline/kg BW/day) tall fescue seed for 23 days. Diet treatment began on day 2. Animals were maintained at thermoneutrality (TN, 19-22 °C, days 1-8) and then exposed to heat stress (HS, cycling 26-36 °C, days 9-22). On day 23, ambient temperature was returned to TN and used as a recovery day. Feed intake (FI) was measured daily, with rectal and skin temperatures determined six times daily. Feed intake reduction from pretreatment levels was greater (P < 0.01) for E + (13.9 ± 0.9 versus 11.9 ± 0.3 kg/day) compared to E - (12.6 ± 0.9 versus 12.4 ± 0.3 kg/day) steers over the entire TN period, regardless of Angus group. During HS, E + cattle had reduced FI (P < 0.02; 6.9 ± 0.2 versus 8.4 ± 0.2 kg/day) compared to E - animals, independent of region of origin. A greater decrease in FI (P < 0.01) was observed for OK (12.1 ± 0.3 versus 6.2 ± 0.2 kg/day) compared to MO ANG (12.2 ± 0.3 versus 7.9 ± 0.2 kg/day) when ambient temperature was increased from TN to HS. On day 13 and days 15-22, OK ANG (E+) had reduced FI (P < 0.01, -2.21 kg) compared to OK ANG (E-), while there was no effect on MO ANG. From day 12 to day 22 of HS, daily minimum temperatures for ear, rump, and tail skin were less for E + (P < 0.05) when compared with E-treated steers, signifying peripheral vasoconstriction in E + animals. This was supported by reduced shoulder and lower tail temperatures (P < 0.01) for E + compared to E-treated OK ANG on the recovery day. In summary, regional differences in the response to fescue toxicosis exist, with peripheral vasomotor effects becoming most evident when animals are subjected to rapid changes in their environment.


Subject(s)
Cattle Diseases/epidemiology , Festuca/microbiology , Foodborne Diseases/veterinary , Mycotoxicosis/veterinary , Spatio-Temporal Analysis , Temperature , Animals , Cattle , Cattle Diseases/microbiology , Foodborne Diseases/epidemiology , Foodborne Diseases/microbiology , Male , Missouri/epidemiology , Mycotoxicosis/epidemiology , Mycotoxicosis/microbiology , Oklahoma/epidemiology , Prevalence , Risk Factors , Seasons
16.
Science ; 343(6174): 999-1001, 2014 Feb 28.
Article in English | MEDLINE | ID: mdl-24557837

ABSTRACT

Pine Island Glacier, a major outlet of the West Antarctic Ice Sheet, has been undergoing rapid thinning and retreat for the past two decades. We demonstrate, using glacial-geological and geochronological data, that Pine Island Glacier (PIG) also experienced rapid thinning during the early Holocene, around 8000 years ago. Cosmogenic (10)Be concentrations in glacially transported rocks show that this thinning was sustained for decades to centuries at an average rate of more than 100 centimeters per year, which is comparable with contemporary thinning rates. The most likely mechanism was a reduction in ice shelf buttressing. Our findings reveal that PIG has experienced rapid thinning at least once in the past and that, once set in motion, rapid ice sheet changes in this region can persist for centuries.


Subject(s)
Ice Cover , Islands , Beryllium/analysis , Motion , Radioisotopes/analysis
17.
J Anim Sci ; 90 Suppl 4: 257-9, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23365348

ABSTRACT

High ambient temperature exposure can cause major reductions in intestinal function, pig performance, and, if severe enough, mortality. Therefore, our objective was to examine how acute heat stress (HS) alters growing pig intestinal integrity and metabolism. Individually penned crossbred gilts and barrows (46 ± 6 kg BW) were exposed to either thermal neutral (TN; 21°C; 35 to 50% humidity; n = 8) or HS conditions (35°C; 24 to 43% humidity; n = 8) for 24 h. All pigs had ad libitum access to feed and water. Rectal temperature (Tr), respiration rates (RR), BW, and feed intake (FI) were measured. Pigs were killed after 24 h of environmental exposure and freshly isolated ileum and colon samples were mounted into modified Ussing chambers. Segments were analyzed for glucose and glutamine nutrient transport and barrier integrity [transepithelial electrical resistance (TER) and fluorescein isothiocyanate-labeled dextran transport]. As expected, pigs exposed to HS had an increase in Tr (39.3 vs. 40.9°C; P < 0.01) and RR (52 vs. 119 breaths per minute; P < 0.05). Heat stress decreased FI (53%; P < 0.05) and BW (-2.2 kg; P < 0.05) compared to TN pigs. Compared to TN pigs, mucosal heat shock protein 70 increased (101%; P < 0.05) whereas intestinal integrity was compromised in the HS pigs (ileum and colon TER decreased 52 and 24%, respectively; P < 0.05). Furthermore, serum endotoxin concentrations increased 200% due to HS (P = 0.05). Intestinal glucose transport and blood glucose were elevated due to HS (P < 0.05). However, ileal sucrase and maltase activities decreased in HS pigs (30 and 24%, respectively; P < 0.05). Altogether, these data indicate that high ambient heat loads reduce intestinal integrity and increase circulating endotoxin and stress in pigs. Furthermore, glucose transport and digestive capacity are altered during acute HS.


Subject(s)
Hot Temperature , Intestinal Mucosa/metabolism , Stress, Physiological , Swine/growth & development , Swine/physiology , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Body Temperature , Diet/veterinary , Eating , Female , Male , Respiration
18.
J Bone Joint Surg Br ; 92(11): 1548-52, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21037350

ABSTRACT

We evaluated the efficacy of anterior fusion alone compared with combined anterior and posterior fusion for the treatment of degenerative cervical kyphosis. Anterior fusion alone was undertaken in 15 patients (group A) and combined anterior and posterior fusion was carried out in a further 15 (group B). The degree and maintenance of the angle of correction, the incidence of graft subsidence, degeneration at adjacent levels and the rate of fusion were assessed radiologically and clinically and the rate of complications recorded. The mean angle of correction in group B was significantly higher than in group A (p = 0.0009). The mean visual analogue scale and the neck disability index in group B was better than in group A (p = 0.043, 0.0006). The mean operation time and the blood loss in B were greater than in group A (p < 0.0001, 0.037). Pseudarthrosis, subsidence of the cage, and problems related to the hardware were more prevalent in group A than in group B (p = 0.034, 0.025, 0.013). Although the combined procedure resulted in a longer operating time and greater blood loss than with anterior fusion alone, our results suggest that for the treatment of degenerative cervical kyphosis the combined approach leads to better maintenance of sagittal alignment, a higher rate of fusion, a lower incidence of complications and a better clinical outcome.


Subject(s)
Cervical Vertebrae/surgery , Kyphosis/surgery , Spinal Fusion/methods , Adult , Aged , Cervical Vertebrae/diagnostic imaging , Disability Evaluation , Female , Humans , Kyphosis/diagnostic imaging , Male , Middle Aged , Radiography , Retrospective Studies , Spinal Fusion/adverse effects , Treatment Outcome
19.
Lab Chip ; 8(10): 1632-9, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18813384

ABSTRACT

Drops of water-in-fluorocarbon emulsions have great potential for compartmentalizing both in vitro and in vivo biological systems; however, surfactants to stabilize such emulsions are scarce. Here we present a novel class of fluorosurfactants that we synthesize by coupling oligomeric perfluorinated polyethers (PFPE) with polyethyleneglycol (PEG). We demonstrate that these block copolymer surfactants stabilize water-in-fluorocarbon oil emulsions during all necessary steps of a drop-based experiment including drop formation, incubation, and reinjection into a second microfluidic device. Furthermore, we show that aqueous drops stabilized with these surfactants can be used for in vitro translation (IVT), as well as encapsulation and incubation of single cells. The compatability of this emulsion system with both biological systems and polydimethylsiloxane (PDMS) microfluidic devices makes these surfactants ideal for a broad range of high-throughput, drop-based applications.


Subject(s)
Biocompatible Materials , Emulsions , Fluorocarbons/chemistry , Surface-Active Agents/chemistry , Water/chemistry , Polyethylene Glycols/chemistry
20.
Gene Ther ; 15(24): 1618-22, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18668144

ABSTRACT

Current technologies for visualizing infectious pathways of viruses rely on fluorescent labeling of capsid proteins by chemical conjugation or genetic manipulation. For noninvasive in vivo imaging of such agents in mammalian tissue, we engineered bioluminescent Gaussia luciferase-tagged Adeno-associated viral (gLuc/AAV) vectors. The enzyme was incorporated into recombinant AAV serotypes 1, 2 and 8 capsids by fusing to the N-terminus of the VP2 capsid subunit to yield bioluminescent virion shells. The gLuc/AAV vectors were used to quantify kinetics of cell-surface-binding by AAV2 capsids in vitro. Bioluminescent virion shells displayed an exponential decrease in luminescent signal following cellular uptake in vitro. A similar trend was observed following intramuscular injection in vivo, although the rate of decline in bioluminescent signal varied markedly between AAV serotypes. gLuc/AAV1 and gLuc/AAV8 vectors displayed rapid decrease in bioluminescent signal to background levels within 30 min, whereas the signal from gLuc/AAV2 vectors persisted for over 2 h. Bioluminescent virion shells might be particularly useful in quantifying dynamics of viral vector uptake in cells and peripheral tissues in live animals.


Subject(s)
Dependovirus/genetics , Genetic Therapy/methods , Genetic Vectors/genetics , Virion/genetics , Animals , Capsid/metabolism , DNA, Recombinant/administration & dosage , DNA, Recombinant/genetics , Gene Expression , Green Fluorescent Proteins/genetics , HeLa Cells , Hindlimb , Humans , Injections, Intramuscular , Luciferases/genetics , Mice , Mice, Inbred BALB C , Microscopy, Fluorescence , Virion/metabolism , Virus Assembly
SELECTION OF CITATIONS
SEARCH DETAIL
...