Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Mult Scler J Exp Transl Clin ; 10(2): 20552173241252571, 2024.
Article in English | MEDLINE | ID: mdl-38756414

ABSTRACT

Background: Low-intensity repetitive transcranial magnetic stimulation (rTMS), delivered as a daily intermittent theta burst stimulation (iTBS) for four consecutive weeks, increased the number of new oligodendrocytes in the adult mouse brain. Therefore, rTMS holds potential as a remyelinating intervention for people with multiple sclerosis (MS). Objective: Primarily to determine the safety and tolerability of our rTMS protocol in people with MS. Secondary objectives include feasibility, blinding and an exploration of changes in magnetic resonance imaging (MRI) metrics, patient-reported outcome measures (PROMs) and cognitive or motor performance. Methods: A randomised (2:1), placebo controlled, single blind, parallel group, phase 1 trial of 20 rTMS sessions (600 iTBS pulses per hemisphere; 25% maximum stimulator output), delivered over 4-5 weeks. Twenty participants were randomly assigned to 'sham' (n = 7) or active rTMS (n = 13), with the coil positioned at 90° or 0°, respectively. Results: Five adverse events (AEs) including one serious AE reported. None were related to treatment. Protocol compliance was high (85%) and blinding successful. Within participant MRI metrics, PROMs and cognitive or motor performance were unchanged over time. Conclusion: Twenty sessions of rTMS is safe and well tolerated in a small group of people with MS. The study protocol and procedures are feasible. Improvement of sham is warranted before further investigating safety and efficacy.

3.
Trials ; 23(1): 626, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35922816

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease, characterised by oligodendrocyte death and demyelination. Oligodendrocyte progenitor cells can differentiate into new replacement oligodendrocytes; however, remyelination is insufficient to protect neurons from degeneration in people with MS. We previously reported that 4 weeks of daily low-intensity repetitive transcranial magnetic stimulation (rTMS) in an intermittent theta-burst stimulation (iTBS) pattern increased the number of new myelinating oligodendrocytes in healthy adult mice. This study translates this rTMS protocol and aims to determine its safety and tolerability for people living with MS. We will also perform magnetic resonance imaging (MRI) and symptom assessments as preliminary indicators of myelin addition following rTMS. METHODS: Participants (N = 30, aged 18-65 years) will have a diagnosis of relapsing-remitting or secondary progressive MS. ≤2 weeks before the intervention, eligible, consenting participants will complete a physical exam, baseline brain MRI scan and participant-reported MS symptom assessments [questionnaires: Fatigue Severity Scale, Quality of Life (AQoL-8D), Hospital Anxiety and Depression Scale; and smartphone-based measures of cognition (electronic symbol digit modalities test), manual dexterity (pinching test, draw a shape test) and gait (U-Turn test)]. Participants will be pseudo-randomly allocated to rTMS (n=20) or sham (placebo; n=10), stratified by sex. rTMS or sham will be delivered 5 days per week for 4 consecutive weeks (20 sessions, 6 min per day). rTMS will be applied using a 90-mm circular coil at low-intensity (25% maximum stimulator output) in an iTBS pattern. For sham, the coil will be oriented 90° to the scalp, preventing the magnetic field from stimulating the brain. Adverse events will be recorded daily. We will evaluate participant blinding after the first, 10th and final session. After the final session, participants will repeat symptom assessments and brain MRI, for comparison with baseline. Participant-reported assessments will be repeated at 4-month post-allocation follow-up. DISCUSSION: This study will determine whether this rTMS protocol is safe and tolerable for people with MS. MRI and participant-reported symptom assessments will serve as preliminary indications of rTMS efficacy for myelin addition to inform further studies. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry ACTRN12619001196134 . Registered on 27 August 2019.


Subject(s)
Multiple Sclerosis , Transcranial Magnetic Stimulation , Adolescent , Adult , Aged , Australia , Brain , Humans , Middle Aged , Multiple Sclerosis/therapy , Quality of Life , Randomized Controlled Trials as Topic , Transcranial Magnetic Stimulation/adverse effects , Treatment Outcome , Young Adult
4.
Mater Horiz ; 9(1): 261-270, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34590657

ABSTRACT

This study demonstrates enhancement of in-device electro-optic activity via a series of theory-inspired organic electro-optic (OEO) chromophores based on strong (diarylamino)phenyl electron donating moieties. These chromophores are tuned to minimize trade-offs between molecular hyperpolarizability and optical loss. Hyper-Rayleigh scattering (HRS) measurements demonstrate that these chromophores, herein described as BAH, show >2-fold improvement in ß versus standard chromophores such as JRD1, and approach that of the recent BTP and BAY chromophore families. Electric field poled bulk devices of neat and binary BAH chromophores exhibited significantly enhanced EO coefficients (r33) and poling efficiencies (r33/Ep) compared with state-of-the-art chromophores such as JRD1. The neat BAH13 devices with charge blocking layers produced very large poling efficiencies of 11.6 ± 0.7 nm2 V-2 and maximum r33 value of 1100 ± 100 pm V-1 at 1310 nm on hafnium dioxide (HfO2). These results were comparable to that of our recently reported BAY1 but with much lower loss (extinction coefficient, k), and greatly exceeding that of other previously reported OEO compounds. 3 : 1 BAH-FD : BAH13 blends showed a poling efficiency of 6.7 ± 0.3 nm2 V-2 and an even greater reduction in k. 1 : 1 BAH-BB : BAH13 showed a higher poling efficiency of 8.4 ± 0.3 nm2 V-2, which is approximately a 2.5-fold enhancement in poling efficiency vs. JRD1. Neat BAH13 was evaluated in plasmonic-organic hybrid (POH) Mach-Zehnder modulators with a phase shifter length of 10 µm and slot widths of 80 and 105 nm. In-device BAH13 achieved a maximum r33 of 208 pm V-1 at 1550 nm, which is ∼1.7 times higher than JRD1 under equivalent conditions.

5.
Adv Mater ; 33(45): e2104174, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34545643

ABSTRACT

High performance organic electro-optic (OEO) materials enable ultrahigh bandwidth, small footprint, and extremely low drive voltage in silicon-organic hybrid and plasmonic-organic hybrid photonic devices. However, practical OEO materials under device-relevant conditions are generally limited to performance of ≈300 pm V-1 (10× the EO response of lithium niobate). By means of theory-guided design, a new series of OEO chromophores is demonstrated, based on strong bis(4-dialkylaminophenyl)phenylamino electron donating groups, capable of EO coefficients (r33 ) in excess of 1000 pm V-1 . Density functional theory modeling and hyper-Rayleigh scattering measurements are performed and confirm the large improvement in hyperpolarizability due to the stronger donor. The EO performance of the exemplar chromophore in the series, BAY1, is evaluated neat and at various concentrations in polymer host and shows a nearly linear increase in r33 and poling efficiency (r33 /Ep , Ep is poling field) with increasing chromophore concentration. 25 wt% BAY1/polymer composite shows a higher poling efficiency (3.9 ± 0.1 nm2 V-2 ) than state-of-the-art neat chromophores. Using a high-ε charge blocking layer with BAY1, a record-high r33 (1100 ± 100 pm V-1 ) and poling efficiency (17.8 ± 0.8 nm2 V-2 ) at 1310 nm are achieved. This is the first reported OEO material with electro-optic response larger than thin-film barium titanate.

6.
PLoS Comput Biol ; 17(3): e1008719, 2021 03.
Article in English | MEDLINE | ID: mdl-33661889

ABSTRACT

The enzyme nitrogenase reduces dinitrogen to ammonia utilizing electrons, protons, and energy obtained from the hydrolysis of ATP. Mo-dependent nitrogenase is a symmetric dimer, with each half comprising an ATP-dependent reductase, termed the Fe Protein, and a catalytic protein, known as the MoFe protein, which hosts the electron transfer P-cluster and the active-site metal cofactor (FeMo-co). A series of synchronized events for the electron transfer have been characterized experimentally, in which electron delivery is coupled to nucleotide hydrolysis and regulated by an intricate allosteric network. We report a graph theory analysis of the mechanical coupling in the nitrogenase complex as a key step to understanding the dynamics of allosteric regulation of nitrogen reduction. This analysis shows that regions near the active sites undergo large-scale, large-amplitude correlated motions that enable communications within each half and between the two halves of the complex. Computational predictions of mechanically regions were validated against an analysis of the solution phase dynamics of the nitrogenase complex via hydrogen-deuterium exchange. These regions include the P-loops and the switch regions in the Fe proteins, the loop containing the residue ß-188Ser adjacent to the P-cluster in the MoFe protein, and the residues near the protein-protein interface. In particular, it is found that: (i) within each Fe protein, the switch regions I and II are coupled to the [4Fe-4S] cluster; (ii) within each half of the complex, the switch regions I and II are coupled to the loop containing ß-188Ser; (iii) between the two halves of the complex, the regions near the nucleotide binding pockets of the two Fe proteins (in particular the P-loops, located over 130 Å apart) are also mechanically coupled. Notably, we found that residues next to the P-cluster (in particular the loop containing ß-188Ser) are important for communication between the two halves.


Subject(s)
Molybdoferredoxin/chemistry , Molybdoferredoxin/metabolism , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Azotobacter vinelandii/enzymology , Binding Sites , Deuterium Exchange Measurement , Electron Transport , Models, Molecular , Protein Binding
7.
ACS Omega ; 5(1): 537-546, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31956800

ABSTRACT

A simple and convergent way to synthesize 2-amino-6-bromonaphthalenes involves condensation of free secondary amines with the corresponding 2-naphthol under Bucherer conditions. The amination protocol relies on common Teflon-capped pressure flasks and has been used to modify the tertiary aminonaphthalene core of DANPY, a biocompatible chromophore shown to be safe and effective for staining a variety of cellular targets. Following a Suzuki reaction with pyridine 4-boronic acid, additional diversity is introduced upon N-alkylation to install the pyridinium cation. New DANPY derivatives and intermediates reported herein reflect the modularity of the dye nucleus, including the addition of groups useful for applications in membrane staining and DNA-based biophotonics.

8.
Br Paramed J ; 4(4): 1-9, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-33456373

ABSTRACT

BACKGROUND: Prison healthcare departments recently started recruiting paramedics to assist in dealing with a rise in medical emergencies largely attributed to an aging prison population and an increase in novel psychoactive substance misuse. There has been little research investigating the paramedic role in this setting. This study aims to explore the strengths and limitations of employing paramedics within the prison healthcare setting from the perspectives of non-paramedic colleagues. METHODS: An exploratory mixed methods study was conducted in a UK category B remand prison, focusing on the opinions and observations of current healthcare and custodial staff. Paper questionnaires were completed by 32 members of staff and semi-structured interviews were conducted with two participants. RESULTS: Seven global themes were identified within the qualitative data: management of medical responses; effect of a specialist role; effect on ambulance escorts; contribution to professionalism within the department; effect on the role of other healthcare staff; prisoner interaction with paramedics; and difficulties encountered in role implementation. Of the 32 participants, 31 believe paramedics have had an overall positive effect on the provision of healthcare, with a variety of reasons explored. CONCLUSION: In a small exploratory study, it is suggested that paramedics possess the relevant skills and training to offer a meaningful contribution to the provision of prison healthcare; however, further research is required to explore the full scope of their contribution in this setting.

9.
ACS Appl Mater Interfaces ; 11(23): 21058-21068, 2019 Jun 12.
Article in English | MEDLINE | ID: mdl-31117459

ABSTRACT

To boost electro-optic (EO) performance, a series of multichromophore dendrimers have been developed based on higher hyperpolarizability (CLD-type) chromophore cores that have been used previously (FTC-type dendrimers). The multichromophore dendrimers were molecularly engineered to have either three arms, two arms, or one arm; long or short linkers; and a fluorinated dendron (FD) or tert-butyldiphenylsilyl (TBDPS) shell. The EO performance obtained by FDSD (poling efficiency = 1.60 nm2 V-2), based on succinic diester linkers, was higher than the analogue with longer adipic diester linkers and higher than the analogs with fewer chromophore moieties. Due to the shorter succinic diester linker and improved site isolation, the dendrimer chromophore with TBDPS groups exhibited enhanced glass-transition temperature ( Tg = 108 °C) and comparable poling efficiency (1.62 nm2 V-2) to the FD-containing version. These neat EO dendrimers have a higher index of refraction ( n = 1.75-1.84 at 1310 nm) than guest-host polymeric EO materials ( n ≈ 1.6, 1310 nm) and FTC-type EO dendrimers ( n = 1.73, 1310 nm), which is important, because a key metric for Mach-Zehnder modulators is proportional to n3. In addition, binary chromophore organic glasses (BCOGs) were prepared by doping a secondary EO chromophore at 25 wt % into neat dendrimers. Enhancements of EO performance were found in all BCOG materials compared with neat dendrimers due to the effect of blending. As a result of increased chromophore density, the n values of the BCOGs improved to 1.81-1.92. One BOCG, in particular, displayed the highest poling efficiency (2.35 nm2 V-2) and largest EO coefficient ( r33) value of 275 pm V-1 at 1310 nm, which represents a high n3 r33 figure-of-merit of 1946 pm V-1. The high poling efficiencies and n3 r33 figure-of-merit combined with excellent film forming confirm these neat dendrimers and BCOGs based on them as promising candidates for incorporation into photonic devices.

10.
J Am Chem Soc ; 141(20): 8315-8326, 2019 05 22.
Article in English | MEDLINE | ID: mdl-31042028

ABSTRACT

The catalytic reduction of O2 to H2O is important for energy transduction in both synthetic and natural systems. Herein, we report a kinetic and thermochemical study of the oxygen reduction reaction (ORR) catalyzed by iron tetraphenylporphyrin (Fe(TPP)) in N, N'-dimethylformamide using decamethylferrocene as a soluble reductant and para-toluenesulfonic acid ( pTsOH) as the proton source. This work identifies and characterizes catalytic intermediates and their thermochemistry, providing a detailed mechanistic understanding of the system. Specifically, reduction of the ferric porphyrin, [FeIII(TPP)]+, forms the ferrous porphyrin, FeII(TPP), which binds O2 reversibly to form the ferric-superoxide porphyrin complex, FeIII(TPP)(O2•-). The temperature dependence of both the electron transfer and O2 binding equilibrium constants has been determined. Kinetic studies over a range of concentrations and temperatures show that the catalyst resting state changes during the course of each catalytic run, necessitating the use of global kinetic modeling to extract rate constants and kinetic barriers. The rate-determining step in oxygen reduction is the protonation of FeIII(TPP)(O2•-) by pTsOH, which proceeds with a substantial kinetic barrier. Computational studies indicate that this barrier for proton transfer arises from an unfavorable preassociation of the proton donor with the superoxide adduct and a transition state that requires significant desolvation of the proton donor. Together, these results are the first example of oxygen reduction by iron tetraphenylporphyrin where the pre-equilibria among ferric, ferrous, and ferric-superoxide intermediates have been quantified under catalytic conditions. This work gives a generalizable model for the mechanism of iron porphyrin-catalyzed ORR and provides an unusually complete mechanistic study of an ORR reaction. More broadly, this study also highlights the kinetic challenges for proton transfer to catalytic intermediates in organic media.


Subject(s)
Metalloporphyrins/chemistry , Oxygen/chemistry , Catalysis , Density Functional Theory , Kinetics , Models, Chemical , Oxidation-Reduction , Thermodynamics
11.
Biophys J ; 116(9): 1598-1608, 2019 05 07.
Article in English | MEDLINE | ID: mdl-31010662

ABSTRACT

Although the critical role of allostery in controlling enzymatic processes is well appreciated, there is a current dearth in our understanding of its underlying mechanisms, including communication between binding sites. One potential key aspect of intersite communication is the mechanical coupling between residues in a protein. Here, we introduce a graph-based computational approach to investigate the mechanical coupling between distant parts of a protein, highlighting effective pathways via which protein motion can transfer energy between sites. In this method, each residue is treated as a node on a weighted, undirected graph, in which the edges are defined by locally correlated motions of those residues and weighted by the strength of the correlation. The method was validated against experimental data on allosteric regulation in the human liver pyruvate kinase as obtained from full-protein alanine-scanning mutagenesis (systematic mutation) studies, as well as computational data on two G-protein-coupled receptors. The method provides semiquantitative information on the regulatory importance of specific structural elements. It is shown that these elements are key for the mechanical coupling between distant parts of the protein by providing effective pathways for energy transfer. It is also shown that, although there are a multitude of energy transfer pathways between distant parts of a protein, these pathways share a few common nodes that represent effective "chokepoints" for the communication.


Subject(s)
Mechanical Phenomena , Pyruvate Kinase/chemistry , Pyruvate Kinase/metabolism , Allosteric Regulation , Biomechanical Phenomena , Humans , Liver/enzymology , Models, Molecular , Protein Conformation
12.
Org Biomol Chem ; 17(15): 3765-3780, 2019 04 10.
Article in English | MEDLINE | ID: mdl-30887974

ABSTRACT

Dyes with nonlinear optical (NLO) properties enable new imaging techniques and photonic systems. We have developed a dye (DANPY-1) for photonics applications in biological substrates such as nucleic acids; however, the design specification also enables it to be used for visualizing biomolecules. It is a prototype dye demonstrating a water-soluble, NLO-active fluorophore with high photostability, a large Stokes shift, and a favorable toxicity profile. A practical and scalable synthetic route to DANPY salts has been optimized featuring: (1) convergent Pd-catalyzed Suzuki coupling with pyridine 4-boronic acid, (2) site-selective pyridyl N-methylation, and (3) direct recovery of crystalline intermediates without chromatography. We characterize the optical properties, biocompatibility, and biological staining behavior of DANPY-1. In addition to stability and solubility across a range of polar media, the DANPY-1 chromophore shows a first hyperpolarizability similar to common NLO dyes such as Disperse Red 1 and DAST, a large two-photon absorption cross section for its size, substantial affinity to nucleic acids in vitro, an ability to stain a variety of cellular components, and strong sensitivity of its fluorescence properties to its dielectric environment.


Subject(s)
Biocompatible Materials/chemistry , Fluorescent Dyes/chemistry , Naphthalenes/chemistry , Photosensitizing Agents/chemistry , Pyridines/chemistry , Biocompatible Materials/chemical synthesis , Biocompatible Materials/pharmacology , Cell Death/drug effects , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/pharmacology , HeLa Cells , Humans , Molecular Structure , Naphthalenes/chemical synthesis , Naphthalenes/pharmacology , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/pharmacology , Pyridines/chemical synthesis , Pyridines/pharmacology
13.
J Biol Chem ; 293(25): 9629-9635, 2018 06 22.
Article in English | MEDLINE | ID: mdl-29720402

ABSTRACT

Nitrogenase is the enzyme that reduces atmospheric dinitrogen (N2) to ammonia (NH3) in biological systems. It catalyzes a series of single-electron transfers from the donor iron protein (Fe protein) to the molybdenum-iron protein (MoFe protein) that contains the iron-molybdenum cofactor (FeMo-co) sites where N2 is reduced to NH3 The P-cluster in the MoFe protein functions in nitrogenase catalysis as an intermediate electron carrier between the external electron donor, the Fe protein, and the FeMo-co sites of the MoFe protein. Previous work has revealed that the P-cluster undergoes redox-dependent structural changes and that the transition from the all-ferrous resting (PN) state to the two-electron oxidized P2+ state is accompanied by protein serine hydroxyl and backbone amide ligation to iron. In this work, the MoFe protein was poised at defined potentials with redox mediators in an electrochemical cell, and the three distinct structural states of the P-cluster (P2+, P1+, and PN) were characterized by X-ray crystallography and confirmed by computational analysis. These analyses revealed that the three oxidation states differ in coordination, implicating that the P1+ state retains the serine hydroxyl coordination but lacks the backbone amide coordination observed in the P2+ states. These results provide a complete picture of the redox-dependent ligand rearrangements of the three P-cluster redox states.


Subject(s)
Azotobacter vinelandii/enzymology , Molybdoferredoxin/chemistry , Nitrogenase/chemistry , Protein Conformation , Protons , Catalysis , Crystallography, X-Ray , Electron Transport , Molybdoferredoxin/metabolism , Nitrogenase/metabolism , Oxidation-Reduction
14.
PLoS One ; 13(5): e0197916, 2018.
Article in English | MEDLINE | ID: mdl-29795683

ABSTRACT

Active learning is a pedagogical approach that involves students engaging in collaborative learning, which enables them to take more responsibility for their learning and improve their critical thinking skills. While prior research examined student performance at majority universities, this study focuses on specifically Historically Black Colleges and Universities (HBCUs) for the first time. Here we present work that focuses on the impact of active learning interventions at Florida A&M University, where we measured the impact of active learning strategies coupled with a SCALE-UP (Student Centered Active Learning Environment with Upside-down Pedagogies) learning environment on student success in General Biology. In biology sections where active learning techniques were employed, students watched online videos and completed specific activities before class covering information previously presented in a traditional lecture format. In-class activities were then carefully planned to reinforce critical concepts and enhance critical thinking skills through active learning techniques such as the one-minute paper, think-pair-share, and the utilization of clickers. Students in the active learning and control groups covered the same topics, took the same summative examinations and completed identical homework sets. In addition, the same instructor taught all of the sections included in this study. Testing demonstrated that these interventions increased learning gains by as much as 16%, and students reported an increase in their positive perceptions of active learning and biology. Overall, our results suggest that active learning approaches coupled with the SCALE-UP environment may provide an added opportunity for student success when compared with the standard modes of instruction in General Biology.


Subject(s)
Academic Performance , Achievement , Biology/education , Education, Medical, Undergraduate/standards , Problem-Based Learning/methods , Students/statistics & numerical data , Educational Measurement , Female , Humans , Male , Universities
15.
Appl Opt ; 56(22): 6311-6316, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-29047829

ABSTRACT

We employed a midinfrared frequency comb source for methane detection in ambient air. The transmitted spectra over a bandwidth of about 500 nm were recorded with an optical spectrum analyzer under various experimental conditions of different path lengths. The normalized absorption spectra were compared and fitted with simulations, yielding quantitative values of concentrations of methane and water vapor in the ambient air. The 3σ detection limit was ∼6.6×10-7 cm-1 in ambient air for a broad spectral range, achieved with a path length of ∼590 m. This approach provides a broad spectral range, a large dynamic range, high sensitivity, and accurate calibration. The performed analysis of the residuals shows that an excellent agreement between the measured and calculated spectral profiles was obtained.

16.
Proc Natl Acad Sci U S A ; 113(36): 10007-12, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27559083

ABSTRACT

Properties of glasses are typically controlled by judicious selection of the glass-forming and glass-modifying constituents. Through an experimental and computational study of the crystalline, molten, and amorphous [Ca12Al14O32](2+) ⋅ (e(-))2, we demonstrate that electron anions in this system behave as glass modifiers that strongly affect solidification dynamics, the glass transition temperature, and spectroscopic properties of the resultant amorphous material. The concentration of such electron anions is a consequential control parameter: It invokes materials evolution pathways and properties not available in conventional glasses, which opens a unique avenue in rational materials design.

17.
Inorg Chem ; 55(17): 8241-3, 2016 Sep 06.
Article in English | MEDLINE | ID: mdl-27494264

ABSTRACT

The efficient removal of pertechnetate (TcO4(-)) anions from liquid waste or melter off-gas solution for an alternative treatment is one of the promising options to manage (99)Tc in legacy nuclear waste. Safe immobilization of (99)Tc is of major importance because of its long half-life (t1/2 = 2.13 × 10(5) yrs) and environmental mobility. Different types of inorganic and solid-state ion-exchange materials have been shown to absorb TcO4(-) anions from water. However, both high capacity and selectivity have yet to be achieved in a single material. Herein, we show that a protonated version of an ultrastable zirconium-based metal-organic framework can adsorb perrhenate (ReO4(-)) anions, a nonradioactive surrogate for TcO4(-), from water even in the presence of other common anions. Synchrotron-based powder X-ray diffraction and molecular simulations were used to identify the position of the adsorbed ReO4(-) (surrogate for TcO4(-)) molecule within the framework.

18.
J Chem Theory Comput ; 12(9): 4362-74, 2016 Sep 13.
Article in English | MEDLINE | ID: mdl-27434770

ABSTRACT

We have developed an approach to coarse-grained (CG) modeling of the van der Waals (vdW) type of interactions among molecules by representing groups of atoms within those molecules in terms of ellipsoids (rather than spheres). Our approach systematically translates an arbitrary underlying all-atom (AA) representation of a molecular system to a multisite ellipsoidal potential within the family of Gay-Berne type potentials. As the method enables arbitrary levels of coarse-graining, or even multiple levels of coarse-graining within a single simulation, we describe the method as a Level of Detail (LoD) model. The LoD model, as integrated into our group's Metropolis Monte Carlo computational package, is also capable of reducing the complexity of the molecular electrostatics by means of a multipole expansion of charges obtained from an AA force field (or directly from electronic structure calculations) of the charges within each ellipsoid. Electronic polarizability may additionally be included. The present CG representation does not include transformation of bonded interactions; ellipsoids are connected at the fully atomistic bond sites by freely rotating links that are constrained to maintain a constant distance. The accuracy of the method is demonstrated for three distinct types of self-assembling or self-organizing molecular systems: (1) the interaction between benzene and perfluorobenzene (dispersion interactions), (2) linear hydrocarbon chains (a system with large conformational flexibility), and (3) the self-organization of ethylene carbonate (a highly polar liquid). Lastly, the method is applied to the interaction of large (∼100 atom) molecules, which are typical of organic nonlinear optical chromophores, to demonstrate the effect of different CG models on molecular assembly.

19.
Am J Med Sci ; 351(5): 480-4, 2016 05.
Article in English | MEDLINE | ID: mdl-27140706

ABSTRACT

OBJECTIVES: Treatment of a renal mass in patients with hematologic malignancy or on immunosuppression can be complex and is not well defined. Surgical excision or thermal ablation of renal mass is generally recommended in view of concern for tumor progression in immunosuppressed patients. We report our management decision experience in patients and literature review on concomitant renal and hematologic malignancy. MATERIALS AND METHODS: A retrospective medical record review of patients with renal cell carcinoma (RCC) and a hematologic malignancy over 3 years at our University Hospital was performed. Data were collected including patient׳s demographics, renal tumor and hematologic malignancy characteristics (stage, pathologic subtype, time of diagnosis, treatment type and prognosis). Surgical and medical management of each malignancy was reviewed and perioperative and overall outcomes are reported. RESULTS: In total, 6 patients were identified with RCC and a hematologic malignancy of which 4 were on immunosuppressive therapy. A total of 5 patients had leukemia and 1 patient had multiple myeloma. Most kidney tumors were stage I, 83%; and 80% were Fuhrman grade II. There was equal distribution of clear cell and papillary-type RCC. All but 1 patient had undergone nephron-sparing surgery. Overall, 50% of our patients died within 1 year after renal surgery for pT1a tumors from causes that are unrelated to renal cancer. CONCLUSIONS: Our small cohort showed significant mortality in patients with hematologic malignancy on immunosuppression, who had their renal mass treated with surgical excision or thermal ablation. However, this mortality was not secondary to surgical procedure itself. The prognosis of the hematologic malignancy might dictate the management of RCC.


Subject(s)
Carcinoma, Renal Cell/therapy , Immunocompromised Host , Kidney Neoplasms/therapy , Leukemia, Myeloid, Acute/therapy , Lymphoproliferative Disorders/therapy , Neoplasms, Second Primary/therapy , Aged , Carcinoma, Renal Cell/etiology , Carcinoma, Renal Cell/immunology , Female , Humans , Kentucky , Kidney Neoplasms/etiology , Kidney Neoplasms/immunology , Leukemia, Myeloid, Acute/etiology , Leukemia, Myeloid, Acute/immunology , Lymphoproliferative Disorders/etiology , Lymphoproliferative Disorders/immunology , Male , Middle Aged , Neoplasms, Second Primary/etiology , Neoplasms, Second Primary/immunology , Retrospective Studies , Treatment Outcome
20.
Langmuir ; 32(7): 1771-81, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26783873

ABSTRACT

Aluminum has attracted great attention recently as it has been suggested by several studies to be associated with increased risks for Alzheimer's and Parkinson's disease. The toxicity of the trivalent ion is assumed to derive from structural changes induced in lipid bilayers upon binding, though the mechanism of this process is still not well understood. In the present study we elucidate the effect of Al(3+) on supported lipid bilayers (SLBs) using fluorescence microscopy, the quartz crystal microbalance with dissipation (QCM-D) technique, dual-polarization interferometry (DPI), and molecular dynamics (MD) simulations. Results from these techniques show that binding of Al(3+) to SLBs containing negatively charged and neutral phospholipids induces irreversible changes such as domain formation. The measured variations in SLB thickness, birefringence, and density indicate a phase transition from a disordered to a densely packed ordered phase.


Subject(s)
Aluminum/pharmacology , Glycerophosphates/chemistry , Lipid Bilayers/chemistry , Phosphorylcholine/chemistry , Diffusion , Molecular Conformation , Molecular Dynamics Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...