Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Res Sq ; 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37886540

ABSTRACT

As genetic testing has become more accessible and affordable, variants of uncertain significance (VUS) are increasingly identified, and determining whether these variants play causal roles in disease is a major challenge. The known disease-associated Annexin A11 (ANXA11) mutations result in ANXA11 aggregation, alterations in lysosomal-RNA granule co-trafficking, and TDP-43 mis-localization and present as amyotrophic lateral sclerosis or frontotemporal dementia. We identified a novel VUS in ANXA11 (P93S) in a kindred with corticobasal syndrome and unique radiographic features that segregated with disease. We then queried neurodegenerative disorder clinic databases to identify the phenotypic spread of ANXA11 mutations. Multi-modal computational analysis of this variant was performed and the effect of this VUS on ANXA11 function and TDP-43 biology was characterized in iPSC-derived neurons. Single-cell sequencing and proteomic analysis of iPSC-derived neurons and microglia were used to determine the multiomic signature of this VUS. Mutations in ANXA11 were found in association with clinically diagnosed corticobasal syndrome, thereby establishing corticobasal syndrome as part of ANXA11 clinical spectrum. In iPSC-derived neurons expressing mutant ANXA11, we found decreased colocalization of lysosomes and decreased neuritic RNA as well as decreased nuclear TDP-43 and increased formation of cryptic exons compared to controls. Multiomic assessment of the P93S variant in iPSC-derived neurons and microglia indicates that the pathogenic omic signature in neurons is modest compared to microglia. Additionally, omic studies reveal that immune dysregulation and interferon signaling pathways in microglia are central to disease. Collectively, these findings identify a new pathogenic variant in ANXA11, expand the range of clinical syndromes caused by ANXA11 mutations, and implicate both neuronal and microglia dysfunction in ANXA11 pathophysiology. This work illustrates the potential for iPSC-derived cellular models to revolutionize the variant annotation process and provides a generalizable approach to determining causality of novel variants across genes.

2.
J Proteome Res ; 22(7): 2493-2508, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37338096

ABSTRACT

Syndromic CLN3-Batten is a fatal, pediatric, neurodegenerative disease caused by variants in CLN3, which encodes the endolysosomal transmembrane CLN3 protein. No approved treatment for CLN3 is currently available. The protracted and asynchronous disease presentation complicates the evaluation of potential therapies using clinical disease progression parameters. Biomarkers as surrogates to measure the progression and effect of potential therapeutics are needed. We performed proteomic discovery studies using cerebrospinal fluid (CSF) samples from 28 CLN3-affected and 32 age-similar non-CLN3 individuals. Proximal extension assay (PEA) of 1467 proteins and untargeted data-dependent mass spectrometry [MS; MassIVE FTP server (ftp://MSV000090147@massive.ucsd.edu)] were used to generate orthogonal lists of protein marker candidates. At an adjusted p-value of <0.1 and threshold CLN3/non-CLN3 fold-change ratio of 1.5, PEA identified 54 and MS identified 233 candidate biomarkers. Some of these (NEFL, CHIT1) have been previously linked with other neurologic conditions. Others (CLPS, FAM217B, QRICH2, KRT16, ZNF333) appear to be novel. Both methods identified 25 candidate biomarkers, including CHIT1, NELL1, and ISLR2 which had absolute fold-change ratios >2. NELL1 and ISLR2 regulate axonal development in neurons and are intriguing new candidates for further investigation in CLN3. In addition to identifying candidate proteins for CLN3 research, this study provides a comparison of two large-scale proteomic discovery methods in CSF.


Subject(s)
Neurodegenerative Diseases , Neuronal Ceroid-Lipofuscinoses , Humans , Child , Molecular Chaperones/metabolism , Cerebrospinal Fluid Proteins , Membrane Glycoproteins/metabolism , Proteomics , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/metabolism
3.
Front Mol Biosci ; 9: 831740, 2022.
Article in English | MEDLINE | ID: mdl-35252351

ABSTRACT

iCn3D was initially developed as a web-based 3D molecular viewer. It then evolved from visualization into a full-featured interactive structural analysis software. It became a collaborative research instrument through the sharing of permanent, shortened URLs that encapsulate not only annotated visual molecular scenes, but also all underlying data and analysis scripts in a FAIR manner. More recently, with the growth of structural databases, the need to analyze large structural datasets systematically led us to use Python scripts and convert the code to be used in Node. js scripts. We showed a few examples of Python scripts at https://github.com/ncbi/icn3d/tree/master/icn3dpython to export secondary structures or PNG images from iCn3D. Users just need to replace the URL in the Python scripts to export other annotations from iCn3D. Furthermore, any interactive iCn3D feature can be converted into a Node. js script to be run in batch mode, enabling an interactive analysis performed on one or a handful of protein complexes to be scaled up to analysis features of large ensembles of structures. Currently available Node. js analysis scripts examples are available at https://github.com/ncbi/icn3d/tree/master/icn3dnode. This development will enable ensemble analyses on growing structural databases such as AlphaFold or RoseTTAFold on one hand and Electron Microscopy on the other. In this paper, we also review new features such as DelPhi electrostatic potential, 3D view of mutations, alignment of multiple chains, assembly of multiple structures by realignment, dynamic symmetry calculation, 2D cartoons at different levels, interactive contact maps, and use of iCn3D in Jupyter Notebook as described at https://pypi.org/project/icn3dpy.

4.
Sci Rep ; 12(1): 2162, 2022 02 09.
Article in English | MEDLINE | ID: mdl-35140266

ABSTRACT

Niemann-Pick disease type C1 (NPC1) is a rare, prematurely fatal lysosomal storage disorder which exhibits highly variable severity and disease progression as well as a wide-ranging age of onset, from perinatal stages to adulthood. This heterogeneity has made it difficult to obtain prompt diagnosis and to predict disease course. In addition, small NPC1 patient sample sizes have been a limiting factor in acquiring genome-wide transcriptome data. In this study, primary fibroblasts from an extensive cohort of 41 NPC1 patients were used to validate our previous findings that the lysosomal quantitative probe LysoTracker can be used as a predictor for age of onset and disease severity. We also examined the correlation between these clinical parameters and RNA expression data from primary fibroblasts and identified a set of genes that were significantly associated with lysosomal defects or age of onset, in particular neurological symptom onset. Hierarchical clustering showed that these genes exhibited distinct expression patterns among patient subgroups. This study is the first to collect transcriptomic data on such a large scale in correlation with clinical and cellular phenotypes, providing a rich genomic resource to address NPC1 clinical heterogeneity and discover potential biomarkers, disease modifiers, or therapeutic targets.


Subject(s)
Lysosomes/metabolism , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/metabolism , Transcriptome , 2-Hydroxypropyl-beta-cyclodextrin/therapeutic use , Adolescent , Age of Onset , Cell Line , Child , Child, Preschool , Disease Progression , Fluorescent Dyes , Humans , Infant , Niemann-Pick Disease, Type C/drug therapy , Niemann-Pick Disease, Type C/pathology
5.
Hum Mol Genet ; 30(24): 2456-2468, 2021 11 30.
Article in English | MEDLINE | ID: mdl-34296265

ABSTRACT

The rare, fatal neurodegenerative disorder Niemann-Pick disease type C1 (NPC1) arises from lysosomal accumulation of unesterified cholesterol and glycosphingolipids. These subcellular pathologies lead to phenotypes of hepatosplenomegaly, neurological degeneration and premature death. The timing and severity of NPC1 clinical presentation is extremely heterogeneous. This study analyzed RNA-Seq data from 42 NPC1 patient-derived, primary fibroblast cell lines to determine transcriptional changes induced by treatment with 2-hydroxypropyl-ß-cyclodextrin (HPßCD), a compound currently under investigation in clinical trials. A total of 485 HPßCD-responsive genes were identified. Pathway enrichment analysis of these genes showed significant involvement in cholesterol and lipid biosynthesis. Furthermore, immunohistochemistry of the cerebellum as well as measurements of plasma from Npc1m1N null mice treated with HPßCD and adeno-associated virus gene therapy suggests that one of the identified genes, GPNMB, may serve as a useful biomarker of treatment response in NPC1 disease. Overall, this large NPC1 patient-derived dataset provides a comprehensive foundation for understanding the genomic response to HPßCD treatment.


Subject(s)
Niemann-Pick Disease, Type C , 2-Hydroxypropyl-beta-cyclodextrin , Animals , Biomarkers , Disease Models, Animal , Eye Proteins/genetics , Humans , Membrane Glycoproteins/genetics , Mice , Mice, Knockout , Niemann-Pick Disease, Type C/drug therapy , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/pathology , Transcriptome
6.
Trauma Surg Acute Care Open ; 6(1): e000660, 2021.
Article in English | MEDLINE | ID: mdl-33693060

ABSTRACT

BACKGROUND: Non-compressible truncal hemorrhage (NCTH) is the leading cause of preventable death after trauma. Resuscitative endovascular balloon occlusion of the aorta (REBOA) achieves temporary hemorrhage control, supporting cardiac and cerebral perfusion prior to definitive hemostasis. Aortic zone selection algorithms vary among institutions. We evaluated the efficacy of an algorithm for REBOA use. METHODS: A multicenter prospective, observational study conducted at six level 1 trauma centers over 12 months. Inclusion criteria were age >15 years with evidence of infradiaphragmatic NCTH needing emergent hemorrhage control within 60 min of ED arrival. An algorithm characterized by the results of focused assessment with sonography in trauma and pelvic X-ray was assessed post hoc for efficacy in a cohort of patients receiving REBOA. RESULTS: Of the 8166 patients screened, 78 patients had a REBOA placed. 21 patients were excluded, leaving 57 patients for analysis. The algorithm ensures REBOA deployment proximal to hemorrhage source to control bleeding in 98.2% of cases and accurately predicts the optimal REBOA zone in 78.9% of cases. If the algorithm was violated, bleeding was optimally controlled in only 43.8% (p=0.01). Three (75.0%) of the patients that received an inappropriate zone 1 REBOA died, two from multiple organ failure (MOF). All three patients that died with an inappropriate zone 3 REBOA died from exsanguination. DISCUSSION: This algorithm ensures proximal hemorrhage control and accurately predicts the primary source of hemorrhage. We propose a new algorithm that will be more inclusive. A zone 3 REBOA should not be performed when a zone 1 is indicated by the algorithm as 100% of these patients exsanguinated. MOF, perhaps from visceral ischemia in patients with an inappropriate zone 1 REBOA, may have been prevented with zone 3 placement or limited zone 1 occlusion time. LEVEL OF EVIDENCE: Level III.

7.
Genetics ; 211(3): 925-942, 2019 03.
Article in English | MEDLINE | ID: mdl-30683757

ABSTRACT

Drosophila melanogaster courtship, although stereotypical, continually changes based on cues received from the courtship subject. Such adaptive responses are mediated via rapid and widespread transcriptomic reprogramming, a characteristic now widely attributed to microRNAs (miRNAs), along with other players. Here, we conducted a large-scale miRNA knockout screen to identify miRNAs that affect various parameters of male courtship behavior. Apart from identifying miRNAs that impact male-female courtship, we observed that miR-957 mutants performed significantly increased male-male courtship and "chaining" behavior, whereby groups of males court one another. We tested the effect of miR-957 reduction in specific neuronal cell clusters, identifying miR-957 activity in Doublesex (DSX)-expressing and mushroom body clusters as an important regulator of male-male courtship interactions. We further characterized the behavior of miR-957 mutants and found that these males court male subjects vigorously, but do not elicit courtship. Moreover, they fail to lower courtship efforts toward females with higher levels of antiaphrodisiac pheromones. At the level of individual pheromones, miR-957 males show a reduced inhibitory response to both 7-Tricosene (7-T) and cis-vaccenyl acetate, with the effect being more pronounced in the case of 7-T. Overall, our results indicate that a single miRNA can contribute to the regulation of complex behaviors, including detection or processing of chemicals that control important survival strategies such as chemical mate-guarding, and the maintenance of sex- and species-specific courtship barriers.


Subject(s)
Mating Preference, Animal , MicroRNAs/genetics , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster , Female , Male , Mushroom Bodies/metabolism , Mutation , Neurons/metabolism , Pheromones/metabolism
8.
J Neurosci Methods ; 316: 83-98, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30243817

ABSTRACT

BACKGROUND: Previous functional magnetic resonance imaging (fMRI) sleep studies have been hampered by the difficulty of obtaining extended amounts of sleep in the sleep-adverse environment of the scanner and often have resorted to manipulations such as sleep depriving subjects before scanning. These manipulations limit the generalizability of the results. NEW METHOD: The current study is a methodological validation of procedures aimed at obtaining all-night fMRI data in sleeping subjects with minimal exposure to experimentally induced sleep deprivation. Specifically, subjects slept in the scanner on two consecutive nights, allowing the first night to serve as an adaptation night. RESULTS/COMPARISON WITH EXISTING METHOD(S): Sleep scoring results from simultaneously acquired electroencephalography data on Night 2 indicate that subjects (n = 12) reached the full spectrum of sleep stages including slow-wave (M = 52.1 min, SD = 26.5 min) and rapid eye movement (REM, M = 45.2 min, SD = 27.9 min) sleep and exhibited a mean of 2.1 (SD = 1.1) nonREM-REM sleep cycles. CONCLUSIONS: It was found that by diligently applying fundamental principles and methodologies of sleep and neuroimaging science, performing all-night fMRI sleep studies is feasible. However, because the two nights of the study were performed consecutively, some sleep deprivation from Night 1 as a cause of the Night 2 results is likely, so consideration should be given to replicating the current study with a washout period. It is envisioned that other laboratories can adopt the core features of this protocol to obtain similar results.


Subject(s)
Brain/physiology , Electroencephalography/methods , Functional Neuroimaging/methods , Magnetic Resonance Imaging/methods , Nerve Net/physiology , Sleep Stages/physiology , Adult , Brain/diagnostic imaging , Feasibility Studies , Female , Humans , Male , Nerve Net/diagnostic imaging , Young Adult
9.
Front Neuroanat ; 8: 24, 2014.
Article in English | MEDLINE | ID: mdl-24795574

ABSTRACT

Although the basic morphological characteristics of neurons in the cerebellar cortex have been documented in several species, virtually nothing is known about the quantitative morphological characteristics of these neurons across different taxa. To that end, the present study investigated cerebellar neuronal morphology among eight different, large-brained mammalian species comprising a broad phylogenetic range: afrotherians (African elephant, Florida manatee), carnivores (Siberian tiger, clouded leopard), cetartiodactyls (humpback whale, giraffe) and primates (human, common chimpanzee). Specifically, several neuron types (e.g., stellate, basket, Lugaro, Golgi, and granule neurons; N = 317) of the cerebellar cortex were stained with a modified rapid Golgi technique and quantified on a computer-assisted microscopy system. There was a 64-fold variation in brain mass across species in our sample (from clouded leopard to the elephant) and a 103-fold variation in cerebellar volume. Most dendritic measures tended to increase with cerebellar volume. The cerebellar cortex in these species exhibited the trilaminate pattern common to all mammals. Morphologically, neuron types in the cerebellar cortex were generally consistent with those described in primates (Fox et al., 1967) and rodents (Palay and Chan-Palay, 1974), although there was substantial quantitative variation across species. In particular, Lugaro neurons in the elephant appeared to be disproportionately larger than those in other species. To explore potential quantitative differences in dendritic measures across species, MARSplines analyses were used to evaluate whether species could be differentiated from each other based on dendritic characteristics alone. Results of these analyses indicated that there were significant differences among all species in dendritic measures.

SELECTION OF CITATIONS
SEARCH DETAIL
...