Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Neuroimaging ; 33(2): 227-234, 2023 03.
Article in English | MEDLINE | ID: mdl-36443960

ABSTRACT

BACKGROUND AND PURPOSE: Conventional MRI measures of multiple sclerosis (MS) disease severity, such as lesion volume and brain atrophy, do not provide information about microstructural tissue changes, which may be driving physical and cognitive progression. Myelin damage in normal-appearing white matter (NAWM) is likely an important contributor to MS disability. Myelin water fraction (MWF) provides quantitative measurements of myelin. Mean MWF reflects average myelin content, while MWF standard deviation (SD) describes variation in myelin within regions. The myelin heterogeneity index (MHI = SD/mean MWF) is a composite metric of myelin content and myelin variability. We investigated how mean MWF, SD, and MHI compare in differentiating MS from controls and their associations with physical and cognitive disability. METHODS: Myelin water imaging data were acquired from 91 MS participants and 31 healthy controls (HC). Segmented whole-brain NAWM and corpus callosum (CC) NAWM, mean MWF, SD, and MHI were compared between groups. Associations of mean MWF, SD, and MHI with Expanded Disability Status Scale and Symbol Digit Modalities Test were assessed. RESULTS: NAWM and CC MHI had the highest area under the curve: .78 (95% confidence interval [CI]: .69, .86) and .84 (95% CI: .76, .91), respectively, distinguishing MS from HC. CONCLUSIONS: Mean MWF, SD, and MHI provide complementary information when assessing regional and global NAWM abnormalities in MS and associations with clinical outcome measures. Examining all three metrics (mean MWF, SD, and MHI) enables a more detailed interpretation of results, depending on whether regions of interest include areas that are more heterogeneous, earlier in the demyelination process, or uniformly injured.


Subject(s)
Multiple Sclerosis , White Matter , Humans , Multiple Sclerosis/pathology , Myelin Sheath/pathology , White Matter/pathology , Magnetic Resonance Imaging/methods , Water , Brain/pathology
2.
Curr Opin Neurol ; 35(4): 467-474, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35788545

ABSTRACT

PURPOSE OF REVIEW: Myelin water imaging (MWI) is generally regarded as the most rigorous approach for noninvasive, in-vivo measurement of myelin content, which has been histopathologically validated. As such, it has been increasingly applied to neurological diseases with white matter involvement, especially those affecting myelin. This review provides an overview of the most recent research applying MWI in neurological syndromes. RECENT FINDINGS: Myelin water imaging has been applied in neurological syndromes including multiple sclerosis, Alzheimer's disease, Huntington's disease, traumatic brain injury, Parkinson's disease, cerebral small vessel disease, leukodystrophies and HIV. These syndromes generally showed alterations observable with MWI, with decreased myelin content tending to correlate with lower cognitive scores and worse clinical presentation. MWI has also been correlated with genetic variation in the APOE and PLP1 genes, demonstrating genetic factors related to myelin health. SUMMARY: MWI can detect and quantify changes not observable with conventional imaging, thereby providing insight into the pathophysiology and disease mechanisms of a diverse range of neurological syndromes.


Subject(s)
Demyelinating Diseases , White Matter , Brain , Demyelinating Diseases/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Myelin Sheath , Syndrome , Water
3.
Mult Scler J Exp Transl Clin ; 8(1): 20552173211070760, 2022.
Article in English | MEDLINE | ID: mdl-35024164

ABSTRACT

BACKGROUND: Spinal cord atrophy provides a clinically relevant metric for monitoring MS. However, the spinal cord is imaged far less frequently than brain due to artefacts and acquisition time, whereas MRI of the brain is routinely performed. OBJECTIVE: To validate spinal cord cross-sectional area measurements from routine 3DT1 whole-brain MRI versus those from dedicated cord MRI in healthy controls and people with MS. METHODS: We calculated cross-sectional area at C1 and C2/3 using T2*-weighted spinal cord images and 3DT1 brain images, for 28 healthy controls and 73 people with MS. Correlations for both groups were assessed between: (1) C1 and C2/3 using cord images; (2) C1 from brain and C1 from cord; and (3) C1 from brain and C2/3 from cord. RESULTS AND CONCLUSION: C1 and C2/3 from cord were strongly correlated in controls (r = 0.94, p<0.0001) and MS (r = 0.85, p<0.0001). There was strong agreement between C1 from brain and C2/3 from cord in controls (r = 0.84, p<0.0001) and MS (r = 0.81, p<0.0001). This supports the use of C1 cross-sectional area calculated from brain imaging as a surrogate for the traditional C2/3 cross-sectional area measure for spinal cord atrophy.

4.
Sci Rep ; 12(1): 732, 2022 01 14.
Article in English | MEDLINE | ID: mdl-35031632

ABSTRACT

Despite significant insights into the neural mechanisms of acute placebo responses, less is known about longer-term placebo responses, such as those seen in clinical trials, or their interactions with brain disease. We examined brain correlates of placebo responses in a randomized trial of a then controversial and now disproved endovascular treatment for multiple sclerosis. Patients received either balloon or sham extracranial venoplasty and were followed for 48 weeks. Venoplasty had no therapeutic effect, but a subset of both venoplasty- and sham-treated patients reported a transient improvement in health-related quality of life, suggesting a placebo response. Placebo responders did not differ from non-responders in total MRI T2 lesion load, count or location, nor were there differences in normalized brain volume, regional grey or white matter volume or cortical thickness (CT). However, responders had higher lesion activity. Graph theoretical analysis of CT covariance showed that non-responders had a more small-world-like CT architecture. In non-responders, lesion load was inversely associated with CT in somatosensory, motor and association areas, precuneus, and insula, primarily in the right hemisphere. In responders, lesion load was unrelated to CT. The neuropathological process in MS may produce in some a cortical configuration less capable of generating sustained placebo responses.


Subject(s)
Cerebral Cortex/pathology , Multiple Sclerosis/pathology , Multiple Sclerosis/psychology , Placebo Effect , Adolescent , Adult , Aged , Cerebral Cortex/diagnostic imaging , Diffusion Tensor Imaging , Endovascular Procedures/methods , Female , Humans , Male , Middle Aged , Multiple Sclerosis/surgery , Organ Size , Quality of Life , Randomized Controlled Trials as Topic , Young Adult
5.
Mult Scler ; 27(14): 2191-2198, 2021 12.
Article in English | MEDLINE | ID: mdl-33749378

ABSTRACT

BACKGROUND: Myelin water imaging (MWI) was recently optimized to provide quantitative in vivo measurement of spinal cord myelin, which is critically involved in multiple sclerosis (MS) disability. OBJECTIVE: To assess cervical cord myelin measurements in relapsing-remitting multiple sclerosis (RRMS) and progressive multiple sclerosis (ProgMS) participants and evaluate the correlation between myelin measures and clinical disability. METHODS: We used MWI data from 35 RRMS, 30 ProgMS, and 28 healthy control (HC) participants collected at cord level C2/C3 on a 3 T magnetic resonance imaging (MRI) scanner. Myelin heterogeneity index (MHI), a measurement of myelin variability, was calculated for whole cervical cord, global white matter, dorsal column, lateral and ventral funiculi. Correlations were assessed between MHI and Expanded Disability Status Scale (EDSS), 9-Hole Peg Test (9HPT), timed 25-foot walk, and disease duration. RESULTS: In various regions of the cervical cord, ProgMS MHI was higher compared to HC (between 9.5% and 31%, p ⩽ 0.04) and RRMS (between 13% and 26%, p ⩽ 0.02), and ProgMS MHI was associated with EDSS (r = 0.42-0.52) and 9HPT (r = 0.45-0.52). CONCLUSION: Myelin abnormalities within clinically eloquent areas are related to clinical disability. MWI metrics have a potential role for monitoring subclinical disease progression and adjudicating treatment efficacy for new therapies targeting ProgMS.


Subject(s)
Cervical Cord , Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Cervical Cord/diagnostic imaging , Disability Evaluation , Humans , Magnetic Resonance Imaging , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Myelin Sheath , Spinal Cord
6.
JAMA Netw Open ; 3(9): e2014220, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32990740

ABSTRACT

Importance: Cognitive impairment is a debilitating symptom of multiple sclerosis (MS) that affects up to 70% of patients. An improved understanding of the underlying pathology of MS-related cognitive impairment would provide considerable benefit to patients and clinicians. Objective: To determine whether there is an association between myelin damage in tissue that appears completely normal on standard clinical imaging, but can be detected by myelin water imaging (MWI), with cognitive performance in MS. Design, Setting, and Participants: In this cross-sectional study, participants with MS and controls underwent cognitive testing and magnetic resonance imaging (MRI) from August 23, 2017, to February 20, 2019. Participants were recruited through the University of British Columbia Hospital MS clinic and via online recruitment advertisements on local health authority websites. Cognitive testing was performed in the MS clinic, and MRI was performed at the adjacent academic research neuroimaging center. Seventy-three participants with clinically definite MS fulfilling the 2017 revised McDonald criteria for diagnosis and 22 age-, sex-, and education-matched healthy volunteers without neurological disease were included in the study. Data analysis was performed from March to November 2019. Exposures: MWI was performed at 3 T with a 48-echo, 3-dimensional, gradient and spin-echo (GRASE) sequence. Cognitive testing was performed with assessments drawn from cognitive batteries validated for use in MS. Main Outcomes and Measures: The association between myelin water measures, a measurement of the T2 relaxation signal from water in the myelin bilayers providing a specific marker for myelin, and cognitive test scores was assessed using Pearson correlation. Three white matter regions of interest-the cingulum, superior longitudinal fasciculus (SLF), and corpus callosum-were selected a priori according to their known involvement in MS-related cognitive impairment. Results: For the 95 total participants, the mean (SD) age was 49.33 (11.44) years. The mean (SD) age was 50.2 (10.7) years for the 73 participants with MS and 46.4 (13.5) for the 22 controls. Forty-eight participants with MS (66%) and 14 controls (64%) were women. The mean (SD) years of education were 14.7 (2.2) for patients and 15.8 (2.5) years for controls. In MS, significant associations were observed between myelin water measures and scores on the Symbol Digit Modalities Test (SLF, r = -0.490; 95% CI, -0.697 to -0.284; P < .001; corpus callosum, r = -0.471; 95% CI, -0.680 to -0.262; P < .001; and cingulum, r = -0.419; 95% CI, -0.634 to -0.205; P < .001), Selective Reminding Test (SLF, r = -0.444; 95% CI, -0.660 to -0.217; P < .001; corpus callosum, r = -0.411; 95% CI, -0.630 to -0.181; P = .001; and cingulum, r = -0.361; 95% CI, -0.602 to -0.130; P = .003), and Controlled Oral Word Association Test (SLF, r = -0.317; 95% CI, -0.549 to -0.078; P = .01; and cingulum, r = -0.335; 95% CI, -0.658 to -0.113; P = .006). No significant associations were found in controls. Conclusions and Relevance: This study used MWI to demonstrate that otherwise normal-appearing brain tissue is diffusely damaged in MS, and the findings suggest that myelin water measures are associated with cognitive performance. MWI offers an in vivo biomarker feasible for use in clinical trials investigating cognition, providing a means for monitoring changes in myelination and its association with symptom worsening or improvement.


Subject(s)
Body Water/diagnostic imaging , Cognitive Dysfunction , Corpus Callosum/diagnostic imaging , Demyelinating Diseases/diagnostic imaging , Magnetic Resonance Imaging/methods , Multiple Sclerosis , Body Water/physiology , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Correlation of Data , Cross-Sectional Studies , Demyelinating Diseases/etiology , Female , Humans , Image Processing, Computer-Assisted/methods , Male , Middle Aged , Multiple Sclerosis/complications , Multiple Sclerosis/psychology , Neuropsychological Tests
7.
J Neuroimaging ; 30(2): 205-211, 2020 03.
Article in English | MEDLINE | ID: mdl-31762132

ABSTRACT

BACKGROUND AND PURPOSE: Cognitive impairment is a core symptom in multiple sclerosis (MS). Damage to normal appearing white matter (NAWM) is likely involved. We sought to determine if greater myelin heterogeneity in NAWM is associated with decreased cognitive performance in MS. METHODS: A total of 27 participants with MS and 13 controls matched for age, sex, and education underwent myelin water imaging (MWI) from which the myelin water fraction (MWF) was calculated. Corpus callosum, superior longitudinal fasciculus, and cingulum were chosen as regions of interest (ROIs) a priori based on their involvement in MS-related cognitive impairment. Cognitive performance was assessed using the Symbol Digit Modalities Test (SDMT). Pearson ́s product moment correlations were performed to assess relationships between cognitive performance and myelin heterogeneity (variance of MWF within an ROI). RESULTS: In MS, myelin heterogeneity in all three ROIs was significantly associated with performance on the SDMT. These correlations ranged from moderate (r = -.561) to moderately strong (r = -.654) and were highly significant (P values ranged from .001 to .0002). Conversely, myelin heterogeneity was not associated with SDMT performance in controls in any ROI (P > .108). CONCLUSION: Increased myelin heterogeneity in NAWM is associated with decreased cognitive processing speed performance in MS.


Subject(s)
Cognition/physiology , Cognitive Dysfunction/psychology , Corpus Callosum/pathology , Multiple Sclerosis/psychology , White Matter/pathology , Adult , Aged , Algorithms , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Corpus Callosum/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Myelin Sheath/pathology , Neuropsychological Tests , Water , White Matter/diagnostic imaging
8.
Neuroimage Clin ; 23: 101896, 2019.
Article in English | MEDLINE | ID: mdl-31276928

ABSTRACT

BACKGROUND: Rapid myelin water imaging (MWI) using a combined gradient and spin echo (GRASE) sequence can produce myelin specific metrics for the human brain. Spinal cord MWI could be similarly useful, but technical challenges have hindered routine application. GRASE rapid MWI was recently successfully implemented for imaging of healthy cervical spinal cord and may complement other advanced imaging methods, such as diffusion tensor imaging (DTI) and quantitative T1 (qT1). OBJECTIVE: To demonstrate the feasibility of cervical cord GRASE rapid MWI in multiple sclerosis (MS), primary lateral sclerosis (PLS) and neuromyelitis optica spectrum disorder (NMO), with comparison to DTI and qT1 metrics. METHODS: GRASE MWI, DTI and qT1 data were acquired in 2 PLS, 1 relapsing-remitting MS (RRMS), 1 primary-progressive MS (PPMS) and 2 NMO subjects, as well as 6 age (±3 yrs) and sex matched healthy controls (HC). Internal cord structure guided template registrations, used for region of interest (ROI) analysis. Z score maps were calculated for the difference between disease subject and mean HC metric values. RESULTS: PLS subjects had low myelin water fraction (MWF) in the lateral funiculi compared to HC. RRMS subject MWF was heterogeneous within the cord. The PPMS subject showed no trends in ROI results but had a region of low MWF Z score corresponding to a focal lesion. The NMO subject with a longitudinally extensive transverse myelitis lesion had low values for whole cord mean MWF of 12.8% compared to 24.3% (standard deviation 2.2%) for HC. The NMO subject without lesions also had low MWF compared to HC. DTI and qT1 metrics showed similar trends, corroborating the MWF results and providing complementary information. CONCLUSION: GRASE is sufficiently sensitive to detect decreased myelin within MS spinal cord plaques, NMO lesions, and PLS diffuse spinal cord injury. Decreased MWF in PLS is consistent with demyelination secondary to motor neuron degeneration. GRASE MWI is a feasible method for rapid assessment of myelin content in the cervical spinal cord and provides complementary information to that of DTI and qT1 measures.


Subject(s)
Cervical Cord/diagnostic imaging , Diffusion Tensor Imaging/methods , Motor Neuron Disease/diagnostic imaging , Multiple Sclerosis/diagnostic imaging , Myelin Sheath , Neuromyelitis Optica/diagnostic imaging , Adult , Cervical Cord/pathology , Diffusion Tensor Imaging/standards , Feasibility Studies , Female , Humans , Male , Middle Aged , Motor Neuron Disease/pathology , Multiple Sclerosis/pathology , Myelin Sheath/pathology , Neuromyelitis Optica/pathology , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...