Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 14: 1268043, 2023.
Article in English | MEDLINE | ID: mdl-38023935

ABSTRACT

The uptake and accumulation of silicon (Si) in grass plants play a crucial role in alleviating both biotic and abiotic stresses. Si supplementation has been reported to increase activity of defence-related antioxidant enzyme, which helps to reduce oxidative stress caused by reactive oxygen species (ROS) following herbivore attack. Atmospheric CO2 levels are known to affect Si accumulation in grasses; reduced CO2 concentrations increase Si accumulation whereas elevated CO2 concentrations often decrease Si accumulation. This can potentially affect antioxidant enzyme activity and subsequently insect herbivory, but this remains untested. We examined the effects of Si supplementation and herbivory by Helicoverpa armigera on antioxidant enzyme (catalase, CAT; superoxide dismutase, SOD; and ascorbate peroxidase, APX) activity in tall fescue grass (Festuca arundinacea) grown under CO2 concentrations of 200, 410, and 640 ppm representing reduced, ambient, and elevated CO2 levels, respectively. We also quantified foliar Si, carbon (C), and nitrogen (N) concentrations and determined how changes in enzymes and elemental chemistry affected H. armigera relative growth rates and plant consumption. Rising CO2 concentrations increased plant mass and foliar C but decreased foliar N and Si. Si supplementation enhanced APX and SOD activity under the ranging CO2 regimes. Si accumulation and antioxidant enzyme activity were at their highest level under reduced CO2 conditions and their lowest level under future levels of CO2. The latter corresponded with increased herbivore growth rates and plant consumption, suggesting that some grasses could become more susceptible to herbivory under projected CO2 conditions.

2.
Plants (Basel) ; 12(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36903856

ABSTRACT

Grasses are hyper-accumulators of silicon (Si), which is known to alleviate diverse environmental stresses, prompting speculation that Si accumulation evolved in response to unfavourable climatic conditions, including seasonally arid environments. We conducted a common garden experiment using 57 accessions of the model grass Brachypodium distachyon, sourced from different Mediterranean locations, to test relationships between Si accumulation and 19 bioclimatic variables. Plants were grown in soil with either low or high (Si supplemented) levels of bioavailable Si. Si accumulation was negatively correlated with temperature variables (annual mean diurnal temperature range, temperature seasonality, annual temperature range) and precipitation seasonality. Si accumulation was positively correlated with precipitation variables (annual precipitation, precipitation of the driest month and quarter, and precipitation of the warmest quarter). These relationships, however, were only observed in low-Si soils and not in Si-supplemented soils. Our hypothesis that accessions of B. distachyon from seasonally arid conditions have higher Si accumulation was not supported. On the contrary, higher temperatures and lower precipitation regimes were associated with lower Si accumulation. These relationships were decoupled in high-Si soils. These exploratory results suggest that geographical origin and prevailing climatic conditions may play a role in predicting patterns of Si accumulation in grasses.

3.
Trends Ecol Evol ; 38(3): 275-288, 2023 03.
Article in English | MEDLINE | ID: mdl-36428125

ABSTRACT

Despite seminal papers that stress the significance of silicon (Si) in plant biology and ecology, most studies focus on manipulations of Si supply and mitigation of stresses. The ecological significance of Si varies with different levels of biological organization, and remains hard to capture. We show that the costs of Si accumulation are greater than is currently acknowledged, and discuss potential links between Si and fitness components (growth, survival, reproduction), environment, and ecosystem functioning. We suggest that Si is more important in trait-based ecology than is currently recognized. Si potentially plays a significant role in many aspects of plant ecology, but knowledge gaps prevent us from understanding its possible contribution to the success of some clades and the expansion of specific biomes.


Subject(s)
Ecology , Ecosystem , Plants , Silicon
4.
Front Plant Sci ; 13: 1030620, 2022.
Article in English | MEDLINE | ID: mdl-36438110

ABSTRACT

Detrimental impacts of drought on crop yield have tripled in the last 50 years with climate models predicting that the frequency of such droughts will intensify in the future. Silicon (Si) accumulation, especially in Poaceae crops such as wheat (Triticum aestivum L.), may alleviate the adverse impacts of drought. We have very limited information, however, about whether Si supplementation could alleviate the impacts of drought under field conditions and no studies have specifically manipulated rainfall. Using field-based rain exclusion shelters, we determined whether Si supplementation (equivalent to 39, 78 and 117 kg ha-1) affected T. aestivum growth, elemental chemistry [Si, carbon (C) and nitrogen (N)], physiology (rates of photosynthesis, transpiration, stomatal conductance, and water use efficiency) and yield (grain production) under ambient and drought (50% of ambient) rainfall scenarios. Averaged across Si treatments, drought reduced shoot mass by 21% and grain production by 18%. Si supplementation increased shoot mass by up to 43% and 73% in ambient and drought water treatments, respectively, and restored grain production in droughted plants to levels comparable with plants supplied with ambient rainfall. Si supplementation increased leaf-level water use efficiency by 32-74%, depending on Si supplementation rates. Water supply and Si supplementation did not alter concentrations of C and N, but Si supplementation increased shoot C content by 39% and 83% under ambient and drought conditions, respectively. This equates to an increase from 6.4 to 8.9 tonnes C ha-1 and from 4.03 to 7.35 tonnes C ha-1 under ambient and drought conditions, respectively. We conclude that Si supplementation ameliorated the negative impacts of drought on T. aestivum growth and grain yield, potentially through its beneficial impacts on water use efficiency. Moreover, the beneficial impacts of Si on plant growth and C storage may render Si supplementation a useful tool for both drought mitigation and C sequestration.

5.
Proc Biol Sci ; 289(1969): 20212536, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35168395

ABSTRACT

Predicting how plants allocate to different anti-herbivore defences in response to elevated carbon dioxide (CO2) concentrations is important for understanding future patterns of crop susceptibility to herbivory. Theories of defence allocation, especially in the context of environmental change, largely overlook the role of silicon (Si), despite it being the major anti-herbivore defence in the Poaceae. We demonstrated that elevated levels of atmospheric CO2 (e[CO2]) promoted plant growth by 33% and caused wheat (Triticum aestivum) to switch from Si (-19%) to phenolic (+44%) defences. Despite the lower levels of Si under e[CO2], resistance to the global pest Helicoverpa armigera persisted; relative growth rates (RGRs) were reduced by at least 33% on Si-supplied plants, irrespective of CO2 levels. RGR was negatively correlated with leaf Si concentrations. Mandible wear was c. 30% higher when feeding on Si-supplemented plants compared to those feeding on plants with no Si supply. We conclude that higher carbon availability under e[CO2] reduces silicification and causes wheat to increase concentrations of phenolics. However, Si supply, at all levels, suppressed the growth of H. armigera under both CO2 regimes, suggesting that shifts in defence allocation under future climate change may not compromise herbivore resistance in wheat.


Subject(s)
Herbivory , Moths , Animals , Carbon Dioxide , Moths/physiology , Plants , Poaceae , Silicon , Triticum
7.
BMC Ecol Evol ; 21(1): 145, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34266378

ABSTRACT

BACKGROUND: Climate change models predict changes in the amount, frequency and seasonality of precipitation events, all of which have the potential to affect the structure and function of grassland ecosystems. While previous studies have examined plant or herbivore responses to these perturbations, few have examined their interactions; even fewer have included belowground herbivores. Given the ecological, economic and biodiversity value of grasslands, and their importance globally for carbon storage and agriculture, this is an important knowledge gap. To address this, we conducted a precipitation manipulation experiment in a former mesic pasture grassland comprising a mixture of C4 grasses and C3 grasses and forbs, in southeast Australia. Rainfall treatments included a control [ambient], reduced amount [50% ambient] and reduced frequency [ambient rainfall withheld for three weeks, then applied as a single deluge event] manipulations, to simulate predicted changes in both the size and frequency of future rainfall events. In addition, half of all experimental plots were inoculated with adult root herbivores (Scarabaeidae beetles). RESULTS: We found strong seasonal dependence in plant community responses to both rainfall and root herbivore treatments. The largest effects were seen in the cool season with lower productivity, cover and diversity in rainfall-manipulated plots, while root herbivore inoculation increased the relative abundance of C3, compared to C4, plants. CONCLUSIONS: This study highlights the importance of considering not only the seasonality of plant responses to altered rainfall, but also the important role of interactions between abiotic and biotic drivers of vegetation change when evaluating ecosystem-level responses to future shifts in climatic conditions.


Subject(s)
Grassland , Herbivory , Climate Change , Ecosystem , Poaceae
8.
Ecology ; 102(9): e03438, 2021 09.
Article in English | MEDLINE | ID: mdl-34139023

ABSTRACT

Silicon (Si) can adversely affect insect herbivores, particularly in plants that evolved the ability to accumulate large quantities of Si. Very rapid herbivore-induced accumulation of Si has recently been demonstrated, but the level of protection against herbivory this affords plants remains unknown. Brachypodium distachyon, a model Si hyperaccumulating grass, was exposed to the chewing herbivore, Helicoverpa armigera, and grown under three conditions: supplied Si over 34 d (+Si), not supplied Si (-Si), or supplied Si once herbivory began (-Si → +Si). We evaluated the effectiveness of each Si treatment at reducing herbivore performance and measured Si-based defenses and phenolics (another form of defense often reduced by Si). Although Si concentrations remained lower, within 72 h of exposure to Si, -Si → +Si plants were as resistant to herbivory as +Si plants. Both +Si and -Si → +Si treatments reduced herbivore damage and growth, and increased mandible wear compared to -Si. After 6 h, herbivory increased filled Si cell density in -Si → +Si plants, and within 24 h, -Si → +Si plants reached similar filled Si cell densities to +Si plants, although decreased phenolics only occurred in +Si plants. We demonstrate that plants with short-term Si exposure can rapidly accumulate Si-based antiherbivore defenses as effectively as plants with long-term exposure.


Subject(s)
Herbivory , Silicon , Plant Defense Against Herbivory , Silicon/pharmacology
9.
Oecologia ; 196(1): 145-154, 2021 May.
Article in English | MEDLINE | ID: mdl-33929604

ABSTRACT

Grasses accumulate large amounts of silicon (Si) which acts as a highly effective physical defence against insect herbivory, however recent evidence shows that Si supplementation also modifies plant secondary metabolite concetrations. Changes in plant secondary metabolites concentrations can have cascading effects on higher trophic levels, such as parasitoids, as they are dependent on the host herbivore for growth and development. However, relatively little is known about how Si application affects higher trophic levels. We examined the effects of Si addition on alkaloid content in leaves of Phalaris aquatica (Poaceae) and the effect on interactions between an aphid (Rhopalosiphum padi) and its parasitoid (Aphidius colemani). Si supplementation had no effect on aphid abundance or parasitism rate. Adult aphids, aphid mummies (parasitised aphids) and the emergent parasitoids were, however, significantly smaller on Si+ plants. Parasitoid traits (size and emergence) were correlated with aphid mummy size. Si addition reduced parasitoid emergence rate and size due to reduced host mummy size, in addition, significantly fewer females emerged from mummies on Si+ plants. Aphid infestation significantly altered alkaloids concentrations, reducing gramine by 80% while increasing tryptamine by 91% in Si- plants. Si addition reduced aphid-induced tryptamine concentrations by 64% and increased 5-MeO-tryptamine by over 800% in control and 142% in aphid infested plants. Our results show that while Si addition has modest impacts on the herbivore, it significantly alters secondary metabolites and has stronger effects on the higher trophic level through changes in the quality of the parasitised host.


Subject(s)
Alkaloids , Aphids , Wasps , Animals , Female , Host-Parasite Interactions , Plant Leaves , Silicon
10.
Glob Chang Biol ; 27(12): 2959-2969, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33772982

ABSTRACT

Silicon (Si) has an important role in mitigating diverse biotic and abiotic stresses in plants, mainly via the silicification of plant tissues. Environmental changes such as atmospheric CO2 concentrations may affect grass Si concentrations which, in turn, can alter herbivore performance. We recently demonstrated that pre-industrial atmospheric CO2 increased Si accumulation in Brachypodium distachyon grass, yet the patterns of Si deposition in leaves and whether this affects insect herbivore performance remains unknown. Moreover, it is unclear whether CO2 -driven changes in Si accumulation are linked to changes in gas exchange (e.g. transpiration rates). We therefore investigated how pre-industrial (reduced; rCO2 , 200 ppm), ambient (aCO2 , 410 ppm) and elevated (eCO2 , 640 ppm) CO2 concentrations, in combination with Si-treatment (Si+ or Si-), affected Si accumulation in B. distachyon and its subsequent effect on the performance of the global insect pest, Helicoverpa armigera. rCO2 increased Si concentrations by 29% and 36% compared to aCO2 and eCO2 respectively. These changes were not related to observed changes in gas exchange under different CO2 regimes, however. The increased Si accumulation under rCO2 decreased herbivore relative growth rate (RGR) by 120% relative to eCO2, whereas rCO2 caused herbivore RGR to decrease by 26% compared to eCO2 . Si supplementation also increased the density of macrohairs, silica and prickle cells, which was associated with reduced herbivore performance. There was a negative correlation among macrohair density, silica cell density, prickle cell density and herbivore RGR under rCO2 suggesting that these changes in leaf surface morphology were linked to reduced performance under this CO2 regime. To our knowledge, this is the first study to demonstrate that increased Si accumulation under pre-industrial CO2 reduces insect herbivore performance. Contrastingly, we found reduced Si accumulation under higher CO2 , which suggests that some grasses may become more susceptible to insect herbivores under projected climate change scenarios.


Subject(s)
Herbivory , Moths , Animals , Carbon Dioxide , Plant Leaves , Silicon
11.
Ecology ; 102(3): e03250, 2021 03.
Article in English | MEDLINE | ID: mdl-33219513

ABSTRACT

Plants deploy an arsenal of chemical and physical defenses against arthropod herbivores, but it may be most cost efficient to produce these only when attacked. Herbivory activates complex signaling pathways involving several phytohormones, including jasmonic acid (JA), which regulate production of defensive compounds. The Poaceae also have the capacity to take up large amounts of silicon (Si), which accumulates in plant tissues. Si accumulation has antiherbivore properties, but it is poorly understood how Si defenses relate to defense hormone signaling. Here we show that Si enrichment causes the model grass Brachypodium distachyon to show lower levels of JA induction when attacked by chewing herbivores. Triggering this hormone even at lower concentrations, however, prompts Si uptake and physical defenses (e.g., leaf hairs), which negatively impact chewing herbivores. Removal of leaf hairs restored performance. Crucially, activation of such Si-based defense is herbivore-specific and occurred only in response to chewing and not fluid-feeding (aphid) herbivores. This aligned with our meta-analysis of 88 studies that showed Si defenses were more effective against chewing herbivores than fluid feeders. Our results suggest integration between herbivore defenses in a model Si-accumulating plant, which potentially allows it to avoid unnecessary activation of other costly defenses.


Subject(s)
Herbivory , Silicon , Animals , Mastication , Plant Leaves , Plants , Signal Transduction
12.
Physiol Plant ; 171(3): 358-370, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32880970

ABSTRACT

Silicon (Si) has been widely reported to improve plant resistance to water stress via various mechanisms including cuticular Si deposition to reduce leaf transpiration. However, there is limited understanding of the effects of Si on stomatal physiology, including the underlying mechanisms and implications for resistance to water stress. We grew tall fescue (Festuca arundinacea Schreb. cv. Fortuna) hydroponically, with or without Si, and treated half of the plants with 20% polyethylene glycol to impose physiological drought (osmotic stress). Scanning electron microscopy in conjunction with X-ray mapping found that Si was deposited on stomatal guard cells and as a sub-cuticular layer in Si-treated plants. Plants grown in Si had a 28% reduction in stomatal conductance and a 23% reduction in cuticular conductance. When abscisic acid was applied exogenously to epidermal leaf peels to promote stomatal closure, Si plants had 19% lower stomatal aperture compared to control plants (i.e. increased stomatal sensitivity) and an increased efflux of guard cell K+ ions. However, the changes in stomatal physiology with Si were not substantial enough to improve water stress resistance, as shown by a lack of significant effect of Si on water potential, growth, photosynthesis and water-use efficiency. Our findings suggest a novel underlying mechanism for reduced stomatal conductance with Si application; specifically, that Si deposition on stomatal guard cells promotes greater stomatal sensitivity as mediated by guard cell K+ efflux.


Subject(s)
Plant Stomata , Silicon , Abscisic Acid , Droughts , Photosynthesis , Silicon/pharmacology
13.
Trends Plant Sci ; 26(2): 99-101, 2021 02.
Article in English | MEDLINE | ID: mdl-33199260

ABSTRACT

Silicon accumulation is a key defence against herbivorous pests, but may have wider detrimental impacts if plants become unpalatable for livestock. We argue that some herbivores are better adapted to silicon-rich diets than others; herbivore anatomy and physiology, and the nature of silicon deposition, are crucial to understanding these differences.


Subject(s)
Herbivory , Silicon , Plants
14.
Sci Rep ; 10(1): 21783, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33288808

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
Biol Lett ; 16(11): 20200608, 2020 11.
Article in English | MEDLINE | ID: mdl-33232651

ABSTRACT

Grasses are hyper-accumulators of silicon (Si), which they acquire from the soil and deposit in tissues to resist environmental stresses. Given the high metabolic costs of herbivore defensive chemicals and structural constituents (e.g. cellulose), grasses may substitute Si for these components when carbon is limited. Indeed, high Si uptake grasses evolved in the Miocene when atmospheric CO2 concentration was much lower than present levels. It is, however, unknown how pre-industrial CO2 concentrations affect Si accumulation in grasses. Using Brachypodium distachyon, we hydroponically manipulated Si-supply (0.0, 0.5, 1, 1.5, 2 mM) and grew plants under Miocene (200 ppm) and Anthropocene levels of CO2 comprising ambient (410 ppm) and elevated (640 ppm) CO2 concentrations. We showed that regardless of Si treatments, the Miocene CO2 levels increased foliar Si concentrations by 47% and 56% relative to plants grown under ambient and elevated CO2, respectively. This is owing to higher accumulation overall, but also the reallocation of Si from the roots into the shoots. Our results suggest that grasses may accumulate high Si concentrations in foliage when carbon is less available (i.e. pre-industrial CO2 levels) but this is likely to decline under future climate change scenarios, potentially leaving grasses more susceptible to environmental stresses.


Subject(s)
Carbon Dioxide , Silicon , Climate Change , Herbivory , Soil
16.
Sci Rep ; 10(1): 14553, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32883958

ABSTRACT

Changes in insect herbivore performance under elevated atmosphere carbon dioxide concentrations e[CO2] are often driven by changes in the nutritional and defensive chemistry of their host plants. Studies addressing how the prolific pest cotton bollworm (Helicoverpa armigera) responds to e[CO2] show that performance usually declines, often associated with lower nutritional (e.g. nitrogen (N) concentrations) quality of host plants under e[CO2]. We investigated the impacts of e[CO2] on nutritional quality and anti-herbivore (jasmonate) defensive signalling in lucerne (Medicago sativa) when challenged by H. armigera. While foliar N decreased under e[CO2], other aspects of nutritional quality (soluble protein, amino acids, foliar C:N) were largely unaffected, potentially due to increased root nodulation under e[CO2]. In contrast, e[CO2] greatly reduced jasmonate signalling in M. sativa following H. armigera attack; jasmonic acid concentrations were ca. 56% lower in attacked plants grown under e[CO2]. Concurrent with this, relative growth rates of H. armigera were ca. 66% higher when feeding on e[CO2]-grown plants. In contrast with previous reports, which we meta-analytically summarise, we provide the first evidence that H. armigera performance can increase under e[CO2]. This may occur in plants, such as M. sativa, where e[CO2] has limited impacts on nutritional quality yet reduces jasmonate defence signalling.


Subject(s)
Carbon Dioxide , Herbivory/physiology , Animals , Ecology , Insecta/physiology , Medicago sativa/parasitology , Moths/physiology , Signal Transduction/physiology
17.
Plants (Basel) ; 9(8)2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32784988

ABSTRACT

Prior feeding by insect herbivores frequently affects plant quality for herbivores that subsequently feed on the plant. Facilitation occurs when one herbivore improves plant quality for other herbivores, including when the former compromises plant defenses. Silicon (Si) is an important defense in grasses that increases following activation of the jasmonic acid (JA) pathway. Given that aphids often stimulate the salicylic acid (SA) pathway, we hypothesized that this could reduce Si defense because of the well documented antagonistic cross-talk between SA and JA. We tested this in the model grass Brachypodium distachyon with and without Si (+Si and -Si, respectively); half of the plants were exposed to aphids (Rhopalosiphum padi) and half remained aphid-free. Aphid-free and aphid-exposed plants were then fed to chewing herbivores (Helicoverpa armigera). Aphids triggered higher SA concentrations which suppressed JA concentrations but this did not affect foliar Si. Chewing herbivores triggered higher JA concentrations and induced Si uptake, regardless of previous feeding by aphids. Chewer growth rates were not impacted by prior aphid herbivory but were reduced by 75% when feeding on +Si plants. We concluded that aphids caused phytohormonal cross-talk but this was overridden by chewing herbivory that also induced Si uptake.

18.
Plants (Basel) ; 9(5)2020 May 19.
Article in English | MEDLINE | ID: mdl-32438683

ABSTRACT

Grasses accumulate large amounts of silicon (Si) which is deposited in trichomes, specialised silica cells and cell walls. This may increase leaf toughness and reduce cell rupture, palatability and digestion. Few studies have measured leaf mechanical traits in response to Si, thus the effect of Si on herbivores can be difficult to disentangle from Si-induced changes in leaf surface morphology. We assessed the effects of Si on Brachypodium distachyon mechanical traits (specific leaf area (SLA), thickness, leaf dry matter content (LDMC), relative electrolyte leakage (REL)) and leaf surface morphology (macrohairs, prickle, silica and epidermal cells) and determined the effects of Si on the growth of two generalist insect herbivores (Helicoverpa armigera and Acheta domesticus). Si had no effect on leaf mechanical traits; however, Si changed leaf surface morphology: silica and prickle cells were on average 127% and 36% larger in Si supplemented plants, respectively. Prickle cell density was significantly reduced by Si, while macrohair density remained unchanged. Caterpillars were more negatively affected by Si compared to crickets, possibly due to the latter having a thicker and thus more protective gut lining. Our data show that Si acts as a direct defence against leaf-chewing insects by changing the morphology of specialised defence structures without altering leaf mechanical traits.

19.
Nature ; 580(7802): 227-231, 2020 04.
Article in English | MEDLINE | ID: mdl-32269351

ABSTRACT

Atmospheric carbon dioxide enrichment (eCO2) can enhance plant carbon uptake and growth1-5, thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO2 concentration6. Although evidence gathered from young aggrading forests has generally indicated a strong CO2 fertilization effect on biomass growth3-5, it is unclear whether mature forests respond to eCO2 in a similar way. In mature trees and forest stands7-10, photosynthetic uptake has been found to increase under eCO2 without any apparent accompanying growth response, leaving the fate of additional carbon fixed under eCO2 unclear4,5,7-11. Here using data from the first ecosystem-scale Free-Air CO2 Enrichment (FACE) experiment in a mature forest, we constructed a comprehensive ecosystem carbon budget to track the fate of carbon as the forest responded to four years of eCO2 exposure. We show that, although the eCO2 treatment of +150 parts per million (+38 per cent) above ambient levels induced a 12 per cent (+247 grams of carbon per square metre per year) increase in carbon uptake through gross primary production, this additional carbon uptake did not lead to increased carbon sequestration at the ecosystem level. Instead, the majority of the extra carbon was emitted back into the atmosphere via several respiratory fluxes, with increased soil respiration alone accounting for half of the total uptake surplus. Our results call into question the predominant thinking that the capacity of forests to act as carbon sinks will be generally enhanced under eCO2, and challenge the efficacy of climate mitigation strategies that rely on ubiquitous CO2 fertilization as a driver of increased carbon sinks in global forests.


Subject(s)
Atmosphere/chemistry , Carbon Dioxide/analysis , Carbon Dioxide/metabolism , Carbon Sequestration , Forests , Trees/metabolism , Biomass , Eucalyptus/growth & development , Eucalyptus/metabolism , Global Warming/prevention & control , Models, Biological , New South Wales , Photosynthesis , Soil/chemistry , Trees/growth & development
20.
Bull Entomol Res ; 110(3): 417-422, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31813402

ABSTRACT

The role of silicon (Si) in alleviating the effects of biotic and abiotic stresses, including defence against insect herbivores, in plants is widely reported. Si defence against insect herbivores is overwhelmingly studied in grasses (especially the cereals), many of which are hyper-accumulators of Si. Despite being neglected, legumes such as soybean (Glycine max) have the capacity to control Si accumulation and benefit from increased Si supply. We tested how Si supplementation via potassium, sodium or calcium silicate affected a soybean pest, the native budworm Helicoverpa punctigera Wallengren (Lepidoptera: Noctuidae). Herbivory reduced leaf biomass similarly in Si-supplemented (+Si) and non-supplemented (-Si) plants (c. 29 and 23%, respectively) relative to herbivore-free plants. Both Si supplementation and herbivory increased leaf Si concentrations. In relative terms, herbivores induced Si uptake by c. 19% in both +Si and -Si plants. All Si treatments reduced H. punctigera relative growth rates (RGR) to a similar extent for potassium (-41%), sodium (-49%) and calcium (-48%) silicate. Moreover, there was a strong negative correlation between Si accumulation in leaves and herbivore RGR. To our knowledge, this is only the second report of Si-based herbivore defence in soybean; the rapid increase in leaf Si following herbivory being indicative of an induced defence. Taken together with the other benefits of Si supplementation of legumes, Si could prove an effective herbivore defence in legumes as well as grasses.


Subject(s)
Glycine max/chemistry , Moths/physiology , Plant Leaves/chemistry , Silicon , Animals , Herbivory , Larva/growth & development , Larva/physiology , Moths/growth & development , Silicates , Glycine max/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...