Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 59(11): 7479-7486, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32302112

ABSTRACT

Interstitial patterning of nuclear spins is a nascent design principle for controlling electron spin superposition lifetimes in open-shell complexes and solid-state defects. Herein we report the first test of the impact of the patterning principle on ligand-based nuclear spin dynamics. We test how substitutional patterning of 1H and 79/81Br nuclear spins on ligands modulates proton nuclear spin dynamics in the ligand shell of metal complexes. To do so, we studied the 1H nuclear magnetic resonance relaxation times (T1 and T2) of a series of eight polybrominated catechol ligands and six complexes formed by coordination of the ligands to a Ti(IV) ion. These studies reveal that 1H T1 values can be enhanced in the individual ligands by a factor of 4 (from 10.8(3) to 43(5) s) as a function of substitution pattern, reaching the maximum value for 3,4,6-tribromocatechol. The T2 for 1H is also enhanced by a factor of 4, varying by ∼14 s across the series. When complexed, the impact of the patterning design strategy on nuclear spin dynamics is amplified and 1H T1 and T2 values vary by over an order of magnitude. Importantly, the general trends observed in the ligands also match those when complexed. Hence, these results demonstrate a new design principle to control 1H spin dynamics in metal complexes through pattern-based design strategies in the ligand shell.

2.
Magnetochemistry ; 6(4)2020 Dec.
Article in English | MEDLINE | ID: mdl-34095291

ABSTRACT

Studying the correlation between temperature-driven molecular structure and nuclear spin dynamics is essential to understanding fundamental design principles for thermometric nuclear magnetic resonance spin-based probes. Herein, we study the impact of progressively encapsulating ligands on temperature-dependent 59Co T 1 (spin-lattice) and T 2 (spin-spin) relaxation times in a set of Co(III) complexes: K3[Co(CN)6] (1); [Co(NH3)6]Cl3 (2); [Co(en)3]Cl3 (3), en = ethylenediamine); [Co(tn)3]Cl3 (4), tn = trimethylenediamine); [Co(tame)2]Cl3 (5), tame = triaminomethylethane); and [Co(dinosar)]Cl3 (6), dinosar = dinitrosarcophagine). Measurements indicate that 59Co T 1 and T 2 increase with temperature for 1-6 between 10 and 60 °C, with the greatest ΔT 1/ΔT and ΔT 2/ΔT temperature sensitivities found for 4 and 3, 5.3(3)%T 1/°C and 6(1)%T 2/°C, respectively. Temperature-dependent T 2* (dephasing time) analyses were also made, revealing the highest ΔT 2*/ΔT sensitivities in structures of greatest encapsulation, as high as 4.64%T 2*/°C for 6. Calculations of the temperature-dependent quadrupolar coupling parameter, Δe 2 qQ/ΔT, enable insight into the origins of the relative ΔT 1/ΔT values. These results suggest tunable quadrupolar coupling interactions as novel design principles for enhancing temperature sensitivity in nuclear spin-based probes.

3.
Chem Sci ; 10(36): 8447-8454, 2019 Sep 28.
Article in English | MEDLINE | ID: mdl-31803424

ABSTRACT

Achieving control of phase memory relaxation times (T m) in metal ions is an important goal of molecular spintronics. Herein we provide the first evidence that nuclear-spin patterning in the ligand shell is an important handle to modulate T m in metal ions. We synthesized and studied a series of five V(iv) complexes with brominated catecholate ligands, [V(C6H4-n Br n O2)3]2- (n = 0, 1, 2, and 4), where the 79/81Br and 1H nuclear spins are arranged in different substitutional patterns. High-field, high-frequency (120 GHz) pulsed electron paramagnetic resonance spectroscopic analysis of this series reveals a pattern-dependent variation in T m for the V(iv) ion. Notably, we show that it is possible for two molecules to have starkly different (by 50%) T m values despite the same chemical composition. Nuclear magnetic resonance analyses of the protons on the ligand shell suggest that relative chemical shift (δ), controlled by the patterning of nuclear spins, is an important underlying design principle. Here, having multiple ligand-based protons with nearly identical chemical shift values in the ligand shell will, ultimately, engender a short T m for the bound metal ion.

SELECTION OF CITATIONS
SEARCH DETAIL
...